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Introduction

The fact that quantum mechanics can place restrictions on our ability to make
measurements is something we all encounter in our first quantum mechanics class.
One is typically presented with the example of the Heisenberg microscope (Heisenberg,
1930), where the position of a particle is measured by scattering light off it. The smaller
the wavelength of light used, the better the precision of the measurement. However,
decreasing the wavelength also increases the magnitude of backaction disturbance of
the particle’s momentum by the measurement (i.e. the momentum kick delivered to the
particle by the scattering event). One finds that the imprecision of the measurement
∆ximp and the backaction momentum disturbance ∆pBA of the particle are constrained
in a way suggestive of the usual Heisenberg uncertainty principle

∆ximp ·∆pBA & h. (1.1)

As instructive as this example is, it hardly provides a systematic way for formulat-
ing precise quantum limits on measurement in more general settings. Recent progress
in the general area of engineered quantum systems has rekindled interest in such fun-
damental limits on measurement and amplification. One would like to have a precise
formulation of what these constraints are, and moreover, an understanding of how
one can achieve these ultimate limits in realistic and experimentally-relevant setups.
In these lectures, I will describe an extremely useful and powerful method for doing
this, the so-called “quantum noise” approach. The focus will be on weak, continuous
measurements, where the measured system is only weakly coupled to the detector, and
information is obtained only gradually in time. Even on a purely classical level, such
measurements are limited by the presence of detector noise. Quantum mechanically,
one finds that there are fundamental quantum limits on the noise properties of any
system capable of acting as a detector or amplifier. These constraints then directly
yield quantum limits on various measurement tasks.

For the most part, these notes draw extensively from material presented in our
recent review article (Clerk et al., 2010), but do not attempt to be as exhaustive as
that work. I have slightly reworked the discussion of several key points to hopefully
add clarity. I also include in these notes a few topics not found in the review article.
These include a discussion of the quantum shot noise of a quantum point contact
QPC (Sec. 2.3), a formulation of the quantum limit on QND qubit detection beyond
weak-coupling (Sec. 3.5), and a heuristic discussion of how a QPC can miss that limit
due to correlated backaction-imprecision noise (Sec. 3.3).
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Quantum noise spectral densities:
some essential features

In this chapter, we give a compact (and no doubt highly incomplete) review of
some basic properties of spectral densities describing quantum noise.

2.1 Classical noise basics

Consider a classical random signal I(t). The signal is characterized by zero mean
〈I(t)〉 = 0, and autocorrelation function

GII(t, t
′) = 〈I(t)I(t′)〉. (2.1)

The autocorrelation function is analogous to a covariance matrix: for t = t′, it tells
us the variance of the fluctuations of I(t), where as for t 6= t′, it tells us if and how
fluctuations of I(t) are correlated with those at I(t′). Some crucial concepts regarding
noise are:

• Stationary noise. The statistical properties of the fluctuations are time-translation
invariant, and hence GII(t, t

′) = GII(t− t′).
• Gaussian fluctuations. The noise is fully characterized by its autocorrelation func-

tion; there are no higher-order cumulants.

• Correlation time. This time-scale τc governs the decay of GII(t): I(t) and I(t′)
are uncorrelated (i.e. GII(t− t′)→ 0) when |t− t′| � τc.

For stationary noise, it is often most useful to think about the fluctuations in the
frequency domain. In the same way that I(t) is a Gaussian random variable with zero
mean, so is its Fourier transform, which we define as:

IT [ω] =
1√
T

∫ +T/2

−T/2
dt eiωtI(t), (2.2)

where T is the sampling time. In the limit T � τc the integral is a sum of a large
number N ≈ T

τc
of random uncorrelated terms. We can think of the value of the integral

as the end point of a random walk in the complex plane which starts at the origin.
Because the distance traveled will scale with

√
T , our choice of normalization makes

the statistical properties of I[ω] independent of the sampling time T (for sufficiently
large T ). Notice that IT [ω] has the peculiar units of [I]

√
secs which is usually denoted

[I]/
√

Hz.
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The spectral density of the noise (or power spectrum) SII [ω] answers the question
“how big is the noise at frequency ω?”. It is simply the variance of IT (ω) in the
large-time limit:

SII [ω] ≡ lim
T→∞

〈|IT [ω]|2〉 = lim
T→∞

〈IT [ω]IT [−ω]〉. (2.3)

A reasonably straightforward manipulation (known as the Wiener-Khinchin theorem)
tells us that the spectral density is equal to the Fourier transform of the autocorrelation
function

SII [ω] =

∫ +∞

−∞
dt eiωtGII(t). (2.4)

We stress that Eq. (2.3) provides a simple intuitive understanding of what a spectral
density represents, whereas in theoretical calculations, one almost always starts with
the expression in Eq. (2.4). We also stress that since the autocorrelation function
GII(t) is real, SII [ω] = SII [−ω]. This is of course in keeping with Eq. (2.2), which
tells us that negative and positive frequency components of the noise are related by
complex conjugation, and hence necessarily have the same magnitude.

As a simple example, consider a simple harmonic oscillator of mass M and fre-
quency Ω. The oscillator is maintained in equilibrium with a large heat bath at tem-
perature T via some infinitesimal coupling which we will ignore in considering the
dynamics. The solution of Hamilton’s equations of motion gives

x(t) = x(0) cos(Ωt) + p(0)
1

MΩ
sin(Ωt), (2.5)

where x(0) and p(0) are the (random) values of the position and momentum at time
t = 0. It follows that the position autocorrelation function is

Gxx(t) = 〈x(t)x(0)〉 (2.6)

= 〈x(0)x(0)〉 cos(Ωt) + 〈p(0)x(0)〉 1

MΩ
sin(Ωt).

Classically in equilibrium there are no correlations between position and momentum.
Hence the second term vanishes. Using the equipartition theorem 1

2MΩ2〈x2〉 = 1
2kBT ,

we arrive at

Gxx(t) =
kBT

MΩ2
cos(Ωt), (2.7)

which leads to the spectral density

Sxx[ω] = π
kBT

MΩ2
[δ(ω − Ω) + δ(ω + Ω)] , (2.8)

which is indeed symmetric in frequency.

2.2 Quantum noise spectral densities

2.2.1 Definition

In formulating quantum noise, one turns from a noisy classical signal I(t) to a Heisenberg-
picture Hermitian operator Î(t). Similar to our noisy classical signal, one needs to
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think about measurements of Î(t) statistically. One can thus introduce a quantum-
noise spectral density which completely mimics the classical definition, e.g.:

Sxx[ω] =

∫ +∞

−∞
dt eiωt〈x̂(t)x̂(0)〉. (2.9)

We have simply inserted the quantum autocorrelation function in the classical defi-
nition. The expectation value is the quantum statistical average with respect to the
noisy system’s density matrix; we assume that this is time-independent, which then
also gives us an autocorrelation function which is time-translational invariant.

What makes quantum noise so quantum? There are at least three answers to this
question that we will explore in turn:

• Zero-point motion. While a classical system at zero-temperature has no noise
(c.f. Eq. (2.8)), quantum mechanically there are still fluctuations, i.e. Sxx[ω] need
not be zero.

• Frequency asymmetry. Quantum mechanically, x̂(t) and x̂(t′) need not commute
when t 6= t′. As a result the autocorrelation function 〈x̂(t)x̂(t′)〉 can be complex,
and Sxx[ω] need not equal Sxx[−ω]. This of course can never happen for a classical
noise spectral density.

• Heisenberg constraints. For any system that can act as a detector or amplifier,
there are fundamental quantum constraints that bound its noise. These con-
straints have their origin in the uncertainty principle, and have no classical coun-
terpart.

Let’s start our discussion with the second point above, and make things concrete
by again considering the example of a harmonic oscillator in thermal equilibrium. We
again assume that the oscillator is maintained in equilibrium with a large heat bath
at temperature T via some infinitesimal coupling which we will ignore in considering
the dynamics. The solutions of the Heisenberg equations of motion are the same as
for the classical case but with the initial position x and momentum p replaced by the
corresponding quantum operators. It follows that the position autocorrelation function
is

Gxx(t) = 〈x̂(t)x̂(0)〉 (2.10)

= 〈x̂(0)x̂(0)〉 cos(Ωt) + 〈p̂(0)x̂(0)〉 1

MΩ
sin(Ωt).

Unlike the classical case, the second term on the RHS cannot be zero: that would
violate the commutation relation [x̂(0), p̂(0)] = i~. Writing x̂ and p̂ in terms of ladder
operators, one finds that 〈x̂(0)p̂(0)〉 = i~/2: it is purely imaginary. One shouldn’t be
too troubled by this, as x̂(0)p̂(0) is not Hermitian and hence is not an observable
quantity. Evaluating 〈x̂(0)2〉 in a similar manner, we find

Gxx(t) = x2
ZPF

{
nB(~Ω)e+iΩt + [nB(~Ω) + 1]e−iΩt

}
, (2.11)

where x2
ZPF ≡ ~/2MΩ is the RMS zero-point uncertainty of x in the quantum ground

state, and nB is the Bose-Einstein occupation factor. Fourier transforming then yields
a spectral density that is asymmetric in frequency:
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Sxx[ω] = 2πx2
ZPF {nB(~Ω)δ(ω + Ω) + [nB(~Ω) + 1]δ(ω − Ω)} . (2.12)

Note that in the high temperature limit kBT � ~Ω we have nB(~Ω) ∼ nB(~Ω) +
1 ∼ kBT

~Ω . Thus, in this limit the Sxx[ω] becomes symmetric in frequency as expected
classically, and coincides with the classical expression for the position spectral density
(cf. Eq. (2.8)).

The Bose-Einstein factors suggest a way to understand the frequency-asymmetry
of Eq. (2.12): the positive frequency part of the spectral density has to do with stim-
ulated emission of energy into the oscillator and the negative frequency part of the
spectral density has to do with emission of energy by the oscillator. That is, the posi-
tive frequency part of the spectral density is a measure of the ability of the oscillator
to absorb energy, while the negative frequency part is a measure of the ability of the
oscillator to emit energy.

The above interpretation is of course not restricted to harmonic oscillators or ther-
mal states. Consider now the quantum noise associated with a general observable Î(t),
and let ρ̂ be the system’s density matrix. We will also let |j〉 denote the system’s
energy eigenstates (eigenenergy Ej), where for simplicity we take j to be a discrete

index. Letting Û(t) denote the time evolution operator, the quantum noise spectral
density SII [ω] can be written

SII [ω] ≡
∫ +∞

−∞
dt eiωt〈Î(t)Î(0)〉 =

∫ +∞

−∞
dt eiωtTr

[
ρ̂ Û†(t)Î(0)Û(t)Î(0)

]
= 2π~

∑
i,j

〈i|ρ̂|i〉
∣∣∣〈j|Î|i〉∣∣∣2 δ(~ω − (Ej − Ei)).

(2.13)

We have used the fact that since ρ̂ is time-independent, it must be diagonal in the basis
of energy eigenstates. The above expression is a standard Lehman representation for
a quantum correlation function. It is nothing more than a sum of Fermi Golden rule
transition rates (from the state |i〉 to |j〉), mediated by the operator Î. More explicitly,
if we coupled Î to a qubit such that

Hqb =
~Ω

2
σ̂z +AÎσ̂x, (2.14)

and then treated the second term via Fermi’s Golden rule, the qubit excitation rate
Γ+ and relaxation rate Γ− would be simply given by:

Γ± =
A2

~2
SII [∓Ω]. (2.15)

The origin of the frequency asymmetry is exactly the same as in our oscillator example.
For ω > 0, the spectral density describes transitions where the noise source absorbs
energy, whereas for ω < 0, it describes transitions where energy is emitted by the
noise source. The noise at positive and negative frequencies need not be equal, as in
general, absorption will occur at a higher rate than emission. In the extreme limit of
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zero temperature, where the system is in its ground state, we see that there is still
noise at positive frequencies, as the noise source can still absorb energy.

Finally, we note that in thermal equilibrium 〈i|ρ̂|i〉 ∝ exp(−Ei/kBT ), which nec-
essarily relates the positive and negative frequency noise via

SII [ω]/SII [−ω] = exp[~ω/kBT ], (2.16)

where T is the temperature of the noise source. On a physical level, this ensures that
the transition rates in Eq. (2.15) obey detailed balance, and thus cause the qubit to
also relax to an equilibrium state at the same temperature as the noise source

2.2.2 Classical interpretation

Our analysis so far seems to indicate that apart from the formal similarity in their
definitions (c.f. Eqs. (2.4) and Eq (2.9)), classical and quantum noise spectral densities
have very little in common. The classical noise spectral density tells us the ‘size’ of
the noise at a particular frequency, whereas in contrast, the quantum noise spectral
density tells us the magnitude of Golden rule transition rates for emission or absorption
events. The frequency-asymmetry of a quantum noise spectral density also gives the
appearance that it contains more information than one has classically. One is tempted
to conclude that referring to SII [ω] as noise is an abuse of terminology.

To overcome these apprehensions and to gain a deeper understanding of quantum
noise spectral densities, it is useful to think of our noisy quantity as a force F̂ , and
see what happens when we weakly couple this force to a harmonic oscillator, i.e.:

Ĥint = −x̂F̂ . (2.17)

Classically, including this force in Newton’s equation yields a Langevin equation:

Mẍ = −MΩ2x−Mγclẋ+ Fcl(t). (2.18)

In addition to the noisy force, we have included a damping term (rate γcl). This will
prevent the oscillator from being infinitely heated by the noise source; we can think
of it as describing the average value of the force exerted on the oscillator by the noise
source, which is now playing the role of a dissipative bath. If this bath is in thermal
equilibrium at temperature T , we also expect the oscillator to equilibrate to the same
temperature. This implies that the heating effect of Fcl(t) must be precisely balanced
by the energy-loss effect of the damping force. More explicitly, one can use Eq. (2.18)
to derive an equation for the average energy of the oscillator 〈E〉. As we are assuming
a weak coupling between the bath and the oscillator, we can take γcl � Ω, and hence
find

d

dt
〈E〉 = −γcl〈E〉+

SFF [Ω]

2M
. (2.19)

Insisting that the stationary 〈E〉 obey equipartition then leads directly to the classical
fluctuation dissipation relation:

SFF [ω] = 2MγclkBT. (2.20)

Let’s now look at our problem quantum mechanically. Writing x̂ in terms of lad-
der operators, we see that Ĥint will cause transitions between different oscillator Fock
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states. Treating Ĥint in perturbation theory, we thus derive Fermi Golden rule transi-
tion rates Γn±1,n for transitions from the n to the n± 1 Fock state:

Γn+1,n = (n+ 1)
x2

ZPF

~2
SFF [−Ω] ≡ (n+ 1)Γ↑, (2.21)

Γn−1,n = (n)
x2

ZPF

~2
SFF [Ω] ≡ nΓ↓. (2.22)

We could then write a simple master equation for the probability pn(t) that the oscil-
lator is in the nth Fock state:

d

dt
pn = [nΓ↑pn−1 + (n+ 1)Γ↓pn+1]− [nΓ↓ + (n+ 1)Γ↑] pn. (2.23)

At this stage, the connection between the classical and quantum pictures is still murky.
To connect them, use the quantum equation for pn to derive an equation for the average
oscillator energy 〈E〉. One obtains

d

dt
〈E〉 = −γ〈E〉+

S̄FF [Ω]

2M
, (2.24)

where:

γ =
x2

ZPF

~2
(SFF [Ω]− SFF [−Ω]) , (2.25)

S̄FF [Ω] =
SFF [Ω] + SFF [−Ω]

2
. (2.26)

We see that the quantum equation for the average energy, Eq. (2.24), has an identical
form to the classical equation (Eq. (2.19)), which gives us a simple way to connect our
quantum noise spectral density to quantities in the classical theory:

• The symmetrized quantum noise spectral density S̄FF [Ω] defined in Eq. (2.26)
plays the same role as the classical noise spectral density SFF [Ω]: it heats the
oscillator the same way a classical stochastic force would.

• The asymmetric-in-frequency part of the quantum noise spectral density SFF [Ω]
is directly related to the damping rate γ in the classical theory. The asymmetry
between absorption and emission events leads to a net energy flow between the
oscillator and the noise source, analogous to what one obtains from a classical
viscous damping force.

We thus see that there is a direct connection to a classical noise spectral density,
and moreover the “extra information” in the asymmetry of a quantum noise spectral
density also corresponds to a seemingly distinct classical quantity, a damping rate. This
latter connection is not so surprising. The asymmetry of the quantum noise is a direct
consequence of (here) [F̂ (t), F̂ (t′)] 6= 0. However, this same non-commutation causes
the average value of 〈F̂ 〉 to change in response to x̂(t) via the interaction Hamiltonian
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of Eq. (2.17). Using standard quantum linear response (i.e. first-order time-dependent
perturbation theory, see e.g. Ch. 6 of (Bruus and Flensberg, 2004)), one finds

δ〈F̂ (t)〉 =

∫ ∞
−∞

dt′ χFF (t− t′)〈x̂(t′)〉, (2.27)

where the force-force susceptibility is given by the Kubo formula:

χFF (t) ≡ −i
~
θ(t)

〈[
F̂ (t), F̂ (0)

]〉
. (2.28)

From the classical Langevin equation Eq. (2.18), we see that part of 〈F̂ (t)〉 which is
in phase with ẋ is the damping force. This leads to the definition

γ =
1

MΩ
(−Im χFF [Ω]) . (2.29)

An explicit calculation shows that the above definition is identical to Eq. (2.25), which
expresses γ in terms of the noise asymmetry. Note that in the language of many-body
Green functions, −Im χFF is referred to as a spectral function, whereas the sym-
metrized noise S̄FF [ω] is known (up to a constant) as the “Keldysh” Green function.

2.2.3 Quantum fluctuation-dissipation theorem and notion of effective
temperature

We saw previously (c.f. Eq. (2.16)) that in thermal equilibrium, the negative and
positive frequency noise are related by a Boltzmann factor. Using the definitions in
Eqs. (2.25) and (2.26), it is then straightforward to derive the quantum version of the
fluctuation-dissipation theorem:

S̄FF [Ω] = Mγ[Ω] ~Ω coth

(
~Ω

2kBT

)
= Mγ[Ω] ~Ω (1 + 2nB [Ω]) . (2.30)

For kBT � ~Ω this reproduces the classical result of Eq. (2.20), whereas in the opposite
limit, it describes zero-point noise. In our example of an oscillator coupled to a noise
source, we saw that the zero-point noise corresponds to transitions where the noise
source absorbs energy– at zero temperature, emission events are not possible.

What happens if our noise source is not in thermal equilibrium? In that case, one
could simply use Eq. (2.30) to define an effective temperature Teff [Ω] from the ratio of
the symmetrized noise and damping. Re-writing things in terms of the quantum noise
spectral density, one finds

kBTeff [Ω] ≡ ~Ω

[
ln

(
SFF [Ω]

SFF [−Ω]

)]−1

. (2.31)

The effective temperature at a given frequency Ω characterizes the asymmetry between
absorption and emission rates of energy ~Ω; a large temperature indicates that these
rates are almost equal, whereas a small temperature indicates that emission by the
noise source is greatly suppressed compared to absorption by the source. Away from
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thermal equilibrium, there is no guarantee that the ratio on the RHS will be frequency-
independent, and hence Teff will generally have a frequency dependence.

The effective temperature of a non-equilibrium is indeed physically meaningful, es-
pecially in the case where one only probes the noise at a single, well-defined frequency.
For example, in our oscillator system, only the noise at ±Ω is important, as we are
considering the limit of a very high quality factor. It is straightforward to show that
the stationary energy distribution of the oscillator found by solving Eq. (2.23) is a
thermal distribution evaluated at the temperature Teff [Ω] defined above. The notion
of an effective temperature plays an important role in so-called backaction cooling
techniques (Clerk and Bennett, 2005; Blencowe et al., 2005; Marquardt et al., 2007;
Wilson-Rae et al., 2007); it also plays a significant role in the quantum theory of linear
amplification, as we shall soon see.

2.3 Brief example: current noise of a quantum point contact

We have seen that we can view quantum noise either in terms of transition rates
between energy eigenstates of the noise source, or in analogy to a classical noise process.
An example which illustrates this dichotomy very nicely is the current noise of a
quantum point contact. We sketch this result quickly in what follows; more details can
be found in (Blanter and Büttiker, 2000).

A quantum point contact (QPC) is a quantum electronic conductor consisting of
a narrow constriction in a two-dimensional electron gas (typically formed using gate
electrodes placed above the 2DEG). The constriction is narrow enough that the trans-
verse momentum of electrons is quantized; we will focus on the single-channel case,
where only a single transverse mode is occupied. Such QPCs can be used as extremely
sensitive charge sensors (Field et al., 1993), and are routinely used as detectors of both
quantum dot qubits (Elzerman et al., 2004; Petta et al., 2004), and even mechanical
oscillators (Poggio et al., 2008). The basic idea of the detection is that the input signal
(a charge) changes the potential of the QPC, and hence changes its conductance. By
monitoring the QPC current, one can thus learn about the signal.

Given its use as a detector, one is naturally very interested in current noise of
a quantum point contact. To a good approximation, one can view this system as
a simple one-dimensional scattering problem, with the QPC constriction acting as a
scattering potential separating two ideal 1D wires (the “leads”). One can easily find the
single particle scattering states, φα(ε, z), which describe the scattering of an electron
incident from the lead α (in a plane wave state) having energy ε (α = L,R). Turning
to a many-particle description, each single particle scattering state is now described
by a fermionic annihilation operator ĉα(ε). It is straightforward to write the electronic
field operator in terms of these states, and then use it to write the current operator
(say in the left lead) with the result

Î(t) =

∫
dε1

∫
dε2

∑
α,β=L,R

Aαβ(ε1, ε2)e−i(ε2−ε1)t ĉ†α(ε1)ĉβ(ε2). (2.32)

The matrix A here is determined by the scattering matrix of the system; an explicit
form is given in, e.g., (Blanter and Büttiker, 2000). For finite temperature and voltage,
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the QPC “leads” are taken to be in equilibrium, but at different chemical potentials,
with µL − µR = eV giving the applied bias voltage. Using Eq. (2.13) we see that the
current noise at frequency ω naturally corresponds to transitions between scattering
states whose energy differs by ~ω. The probability for a given scattering state incident
from lead α to be occupied is just given by a Fermi function evaluated at the chemical
potential µα. At zero temperature the Fermi function becomes a step function, and
all states are either empty, or are occupied with probability one. In this case, the only
possible transitions at ω = 0 involve states in the energy window µR < ε < µL, with
the relevant transitions being the removal of a left scattering state, and the creation
of a right scattering state at the same energy.

We thus obtain a picture of the current noise which appears to be explicitly quan-
tum mechanical, involving transitions between energy eigenstates of the detector (here,
just scattering states). Remarkably, a simple classical interpretation in terms of a clas-
sical noise process is also possible. Note first that at zero temperature (and ignoring
any energy-dependence of the scattering), the average current through the QPC ob-
tained from Eq. (2.32) is simply given by the Landauer-Büttiker result

1

e
〈Î〉 =

eV

h
T , (2.33)

where 0 ≤ T ≤ 1 is the transmission probability of the QPC. One also finds from
Eq. (2.32) that the zero frequency current noise is given by

1

e2
S̄II [0] =

eV

h
T (1− T ) . (2.34)

These results correspond to a simple classical noise process, where electrons are launched
one at a time towards the scattering potential at a rate eV/h. In each event, the elec-
tron is either transmitted (probability T ) or reflected (probability 1−T ). We thus have
a binomial process, similar to flipping an unevenly-weighted coin. The average current
just corresponds to the average number of electrons that are transmitted, while the
noise corresponds to the variance of the binomial process. If we imagine integrating
Î(t) up from t = 0 (i.e. counting electrons), then in the long-time limit, we have a
variance

1

e2

〈〈(∫ t

0

dt′ Î(t′)

)2
〉〉

=
eV t

h
T (1− T ) ≡ NAT (1− T ) . (2.35)

Here, we can view NA as the number of attempts at getting an electron through the
QPC. We thus have a concrete example showing the two complimentary ways that one
can look at quantum noise in general (i.e. in terms of transitions between eigenstates,
versus in analogy to a classical noise process).

2.4 Heisenberg inequality on detector quantum noise

2.4.1 Generic two-port linear response detector

Having discussed two of the ways quantum noise spectral densities differ from their
classical counterparts (zero-point noise, frequency asymmetry), we now turn to the
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input output
operator
detector

signal
source "load"

Fig. 2.1 (Color online) Schematic of a generic linear response detector.

third distinguishing feature: there are purely quantum constraints on the noise prop-
erties of any system capable of acting as a detector or amplifier. We will be interested
in the generic two-port detector sketched in Fig. 2.1. The detector has an input port
characterized by an operator F̂ : this is the detector quantity which couples to the
system we wish to measure. Similarly, the output port is characterized by an operator
Î: this is the detector quantity that we will readout to learn about the system coupled
to the input. For example, for a QPC detector coupled to a double dot, the state of the
qubit σz changes the potential of electrons in the QPC. The operator F̂ will thus in-
volve the charge-density operator of the QPC electrons. In contrast, the quantity that
is actually measured is the QPC current; hence, Î will be the QPC current operator.

We will be interested almost exclusively in detector-signal couplings weak enough
that one can use linear-response to describe how Î changes in response to the signal. For
example, if we couple an input signal ẑ to our detector via an interaction Hamiltonian

Ĥint = ẑ · F̂ , (2.36)

linear response tells us that the change in the detector output will be given by:

δ〈Î(t)〉 =

∫ ∞
−∞

dt′χIF (t− t′)〈ẑ(t′)〉, (2.37)

χIF (t) = − i
~
θ(t)

〈
[Î(t), F̂ (0)]

〉
. (2.38)

This is completely analogous to the way we discussed damping, c.f. Eq. (2.29). As is
standard in linear-response, the expectation values above are all with respect to the
state of the system (signal plus detector) at zero coupling (i.e. Ĥint = 0). Also, without
loss of generality, we will assume that both 〈Î〉 and 〈F̂ 〉 are zero in the absence of any
coupling to the input signal.

Even on a classical level, any noise in the input and output ports will limit our
ability to make measurements with the detector. Quantum mechanically, we have seen
that it is the symmetrized quantum spectral densities that play a role analogous to
classical noise spectral densities. We will thus be interested in the quantities S̄II [ω]
and S̄FF [ω]. Given our interest in weak detector-signal couplings, it will be sufficient
to characterize the detector noise at zero-coupling to the detector (though we will go
beyond this assumption in our discussion of qubit detection).
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In addition to S̄II , S̄FF , we will also have to contend with the fact that the noise
in Î and F̂ may be correlated. Classically, we would describe such correlations via a
correlation spectral density SIF [ω]:

SIF [ω] ≡ lim
T→∞

〈IT [ω] (FT [ω])
∗〉 =

∫ ∞
−∞

dt 〈I(t)F (0)〉eiωt, (2.39)

where the Fourier transforms IT [ω] and FT [ω] are defined analogously to Eq. (2.2). Not
surprisingly, such classical correlations correspond to a symmetrized quantum noise
spectral density

S̄IF [ω] ≡ 1

2

∫ ∞
−∞

dt 〈{Î(t), F̂ (0)}〉eiωt. (2.40)

Note that the classical correlation density SIF [ω] is generally complex, and is only
guaranteed to be real at ω = 0; the same is true of S̄IF [ω].

Finally, we normally are only concerned about how large the output noise is com-
pared to the magnitude of the “amplified” input signal at the output (i.e. Eq. (2.37)).
It is thus common to think of the output noise at a given frequency δIT [ω] as an equiva-
lent fluctuation of the signal δzimp[ω] ≡ δIT [ω]/χIF [ω]. We thus define the imprecision
noise spectral density and imprecision-backaction correlation density as:

S̄zz[ω] ≡ S̄II [ω]

|χIF [ω]|2
, S̄zF [ω] ≡ S̄IF [ω]

χIF [ω]
. (2.41)

2.4.2 Motivation and derivation of noise constraint

We can now ask what sort of constraints exist on the detector noise. In almost all
relevant cases, our detector will be some sort of driven quantum system, and hence
will not be in thermal equilibrium. As a result, any meaningful constraint should not
rely on having a thermal equilibrium state. Classically, all we can say is that the
correlations in the noise cannot be bigger than the noise itself. This constraint takes
the form of a a Schwartz inequality, yielding

Szz[ω]SFF [ω] ≥ |SzF [ω]|2 . (2.42)

Equality here implies a perfect correlation, i.e. IT [ω] ∝ FT [ω].
Quantum mechanically, additional constraints will emerge. Heuristically, this can

be expected by making an analogy to the example of the Heisenberg microscope.
In that example, one finds that there is a tradeoff between the imprecision of the
measurement (i.e. the position resolution) and the backaction of the measurement
(i.e. the momentum kick delivered to the particle). In our detector, noise in Î will
correspond to the imprecision of the measurement (i.e. the bigger this noise, the harder
it will be to resolve the signal described by Eq. (2.37)). Similarly, noise in F̂ is the
backaction: as we already saw, by virtue of the detector-signal coupling, F̂ acts as
a noisy force on the measured quantity ẑ. Making the analogy to Eq. (1.1) for the
Heisenberg microscope, we thus might expect a bound on the product of S̄zzS̄FF .

Alternatively, we see from Eq. (2.38) that for our detector to have any response
at all, Î(t) and F̂ (t′) cannot commute for all times. Quantum mechanically, we know
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that uncertainty relations apply any time we have non-commuting observables; here
things are somewhat different, as the non-commutation is between Heisenberg-picture
operators at different times. Nonetheless, we can still use the standard derivation of an
uncertainty relation to obtain a useful constraint. Recall that for two non-commuting
observables Â and B̂, the full Heisenberg inequality is (see, e.g. (Gottfried, 1966))

(∆A)2(∆B)2 ≥ 1

4

〈{
Â, B̂

}〉2

+
1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 . (2.43)

Here we have assumed 〈Â〉 = 〈B̂〉 = 0. We now take Â and B̂ to be cosine-transforms
of Î and F̂ , respectively, over a finite time-interval T :

Â ≡
√

2

T

∫ T/2

−T/2
dt cos(ωt+ δ) Î(t), B̂ ≡

√
2

T

∫ T/2

−T/2
dt cos(ωt) F̂ (t). (2.44)

Note that we have phase shifted the transform of Î relative to that of F̂ by a phase δ.
In the limit T →∞ we find

S̄zz[ω]S̄FF [ω] ≥
[
Re

(
eiδS̄zF [ω]

)]2
+

~2

4

[
Re eiδ

(
1− (χFI [ω])

∗

χIF [ω]

)]2

. (2.45)

We have introduced here a new susceptibility χFI [ω], which describes the reverse
response coefficient or reverse gain of our detector. This is the response coefficient
relevant if we used our detector in reverse: couple the input signal ẑ to Î, and see how
〈F̂ 〉 changes. A linear response relation analogous to Eq. (2.37) would then apply, with
F ↔ I everywhere. We define the ratio of the detector response coefficients to be

r[ω] =
(χFI [ω])

∗

χIF [ω]
. (2.46)

If we now maximize the RHS of Eq. (2.45) over all values of δ, we are left with the
optimal bound

S̄zz[ω]S̄FF [ω]−
∣∣S̄zF [ω]

∣∣2 ≥ ~2

4
|1− r[ω]|2

(
1 + ∆

[
2S̄zF [ω]

~(1− r[ω])

])
, (2.47)

where

∆[y] =

∣∣1 + y2
∣∣− (1 + |y|2

)
2

, (2.48)

Note that for any complex number y, 1 + ∆[y] > 0. Related noise constraints on
linear-response detectors are presented in (Braginsky and Khalili, 1996) and (Averin,
2003).

We see that applying the uncertainty principle to our detector has given us a rig-
orous constraint on the detector’s noise which is stronger than the simple classical
bound of Eq. (2.42) on its correlations. This extra quantum constraint vanishes if our
detector has completely symmetric response coefficients, that is r[ω] = 1. For simplic-
ity, consider first the ω → 0 limit, where all noise spectral densities and susceptibilities
are real, and hence the term involving ∆[y] vanishes. For a non-symmetric detector,
the extra quantum term on the RHS of Eq. (2.45) then implies:
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• The product of the imprecision noise S̄zz and backaction noise S̄FF cannot be
zero. The magnitude of both kinds of fluctuations must be non-zero.

• Moreover, these fluctuations cannot be perfectly correlated with one another: we

cannot have
(
S̄zF

)2
= S̄zzS̄FF .

The presence of these extra quantum constraints on noise will lead to fundamental
quantum limits on various things we might try to do with our detector; this will be
the focus of the remainder of these lectures.

2.4.3 Comments on the reverse gain of a detector

Before moving on, it is worth commenting more on the reverse-gain χFI : both its
meaning and its role in the quantum noise inequality have been the subject of some
confusion. Several points are worth noting:

• If our detector is in thermal equilibrium and in a time-reversal symmetric state,
then the relationship between χIF and χFI is constrained by Onsager reciprocity
relations (see, e.g., (Pathria, 1996) for an elementary discussion). One has χIF [ω] =
±χFI [ω]∗ where the + (−) sign corresponds to the case where both F̂ and Î have
the same (opposite) parity under time-reversal. For example, in a QPC detector,
F̂ is a charge and hence even under time-reversal, where Î is a current and odd
under time-reversal; one thus has χIF [ω] = −χFI [ω]∗. It follows that in ther-
mal equilibrium, if one has forward response, then one must necessarily also have
reverse response.

• In general, it is highly undesirable to have non-zero reverse gain. To make a
measurement of the output operator Î, we must necessarily couple to it in some
manner. If χFI 6= 0, the noise associated with this coupling could in turn lead to
additional back-action noise in the operator F̂ , above and beyond the intrinsic
fluctuations described by S̄FF . This is clearly something to be avoided. Thus, the
ideal situation is to have χFI = 0, implying a high asymmetry between the input
and output of the detector, and requiring the detector to be in a state far from
thermodynamic equilibrium.

2.4.4 Ideal quantum noise

We can now define in a general and sensible manner what it means for a detector to
possess “ideal” quantum noise at a frequency ω: we require that the detector optimizes
the fundamental quantum noise inequality, i.e. Eq. (2.47) holds as an equality. We will
see that having such ideal quantum noise properties is a pre-requisite for achieving
various quantum limits on measurement. It also places tight constraints on the prop-
erty of our detector. One can show having ideal quantum noise necessarily implies
(Clerk et al., 2010):

• In a certain restricted sense, the operators Î and F̂ must be proportional to one
another. More formally, S̄II [ω] and S̄FF [ω] can be written as sums transitions
between detector energy eigenstates |i〉 and |f〉 whose energy differs by ±~ω (c.f.
Eq. (2.13)). To have quantum ideal noise, one needs that for each such contributing
transitions, the ratio of the matrix elements 〈f |Î|i〉/〈f |F̂ |i〉 is the same.

• As long as |r[ω]| 6= 1, the detector cannot be in a thermal equilibrium state.
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• For a general non-equilibrium system, the effective temperature defined using the
asymmetry of the quantum noise spectral density SII [ω] (c.f. Eq. (2.31)) need not
be the same as that defined using SFF [ω]. However, having quantum-ideal noise
necessarily implies that both these effective temperatures are the same. Paradox-
ically, while such a detector cannot be in equilibrium, its effective temperature is
in some sense more universal than that of an arbitrary non-equilibrium system.

At this stage, the true meaning of the quantum noise inequality may seem quite
opaque. It may also seem that there is no hope of understanding in general what
one needs to do to achieve ideal quantum noise. However, by considering concrete
examples, we will gain insights into both these issues.



3

Quantum limit on QND qubit
detection

3.1 Measurement rate and dephasing rate

Armed now with a basic understanding of quantum noise and the Heisenberg bounds
which constrain it, we can finally consider doing something useful with our generic
linear response detector. To that end, we consider a qubit whose Hamiltonian is

Ĥqb =
~Ω

2
σ̂z. (3.1)

Suppose we want to measure whether the qubit is in its ground or excited state. We
start by coupling its σ̂z operator to the input of our detector:

Ĥint = Aσ̂zF̂ . (3.2)

By virtue of Eq. (2.37), the two different qubit eigenstates | ↑〉, | ↓〉 will lead to two
different average values of the detector 〈Î〉; thus, by looking at the detector output,
we can measure the value of σz.

Note crucially that [Ĥint, Ĥqb] = 0. As such, 〈σ̂z〉 is a constant of the motion even
when the qubit is coupled to the detector: if the qubit starts in an energy eigenstate,
it will remain in that state. Detection schemes where the coupling commutes with
the system Hamiltonian are known as being “quantum non-demolition” (QND). On
practical level, this can be extremely useful, as one can leave the measurement on for a
long time (or make multiple measurements) to improve the precision without worrying
about the measurement process altering the value of the measured observable.

Because of the intrinsic noise in the output of our detector (described by S̄II),
it will take some time before we can tell whether the qubit is up or down. We only
gradually obtain information about the qubit state, and can rigorously define a rate
to characterize this process, the so-called measurement rate. Imagine we turn the
measurement on at t = 0, and start to integrate up the output I(t) of our detector:

m̂(t) =

∫ t

0

dt′Î(t′). (3.3)

The probability distribution of the integrated output m̂(t) will depend on the state of
the qubit; for long times, we may approximate the distribution corresponding to each
qubit state as being gaussian. Noting that we have chosen Î so that its expectation
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value vanishes at zero coupling, the average value of 〈m̂(t)〉 corresponding to each
qubit state is:

〈m̂(t)〉↑ = AχIF [0]t, 〈m̂(t)〉↓ = −AχIF [0]t. (3.4)

Note that we are assuming integration times t much longer than any internal detector
timescale, and thus only the zero-frequency response coefficient χIF appears. Taking
the long time limit here is consistent with our assumption of a weak detector-qubit
coupling: it will take a long time before we get information on the qubit state.

Next, let’s consider the uncertainty in the quantity m as described by its variance
〈〈m2〉〉 ≡ 〈m̂2〉−〈m̂〉2. For weak coupling, we can ignore the fact that the variance will
have a small dependence on the qubit state, as this will only lead to higher-order-in-A
corrections to our expression for the measurement rate. We thus have

〈m̂2(t)〉 ≡
∫ t

0

dt1

∫ t

0

dt2 〈Î(t1)Î(t2)〉 → S̄II [0]t. (3.5)

We have again taken the limit where t is much larger than the correlation time of the
detector noise, and hence the variance is completely determined by the zero-frequency
output noise.

We can now define the measurement rate by how quickly the resolving power of
the measurement grows:1

1

4

[〈m̂(t)〉↑ − 〈m̂(t)〉↓]2

〈〈m̂2(t)〉〉↑ + 〈〈m̂2(t)〉〉↓
≡ Γmeast. (3.6)

This yields

Γmeas =
A2 (χIF )

2

2S̄II
. (3.7)

We can think of 1/Γmeas as a measurement time, i.e. the amount of time we have to
wait before we can reliably determine whether the qubit is up or down (above the
intrinsic noise in the detector output).

Having characterized the imprecision of the measurement, we now turn to its back-
action. At first glance, one might think the fact that we have a QND setup implies
the complete absence of measurement backaction. This is not true. We are making a
measurement of σz, and hence there must be a backaction disturbance of the conjugate
quantities σx, σy. More explicitly, if we start the qubit out in a superposition of energy
eigenstates, then the phase information of this superposition will be lost gradually in
time due to the backaction of the measurement.

1The strange looking factor of 1/4 here is purely chosen for convenience, as it will let us formulate
the quantum limit in a way that involves no numerical prefactors. Interestingly enough, the prefactor
can be rigorously justified if one uses the accessible information (a standard information-theoretic
measure) to quantify the difference between the output distributions; the measurement rate as defined
is precisely the rate of growth of the accessible information (Clerk et al., 2003).
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To describe this backaction effect, note first that we can incorporate the coupling
into the qubit’s Hamiltonian as

Ĥqb + Ĥint =

(
~Ω

2
+AF̂

)
σ̂z. (3.8)

Thus, from the qubit’s point of view, the coupling to the detector means that its
splitting frequency has a randomly fluctuating part described by ∆Ω = 2AF̂/~. This
effective frequency fluctuation will cause a diffusion of the qubit’s phase in the long
time limit according to 〈

e−iϕ
〉

=
〈
e−i

∫ t
0
dτ ∆Ω(τ)

〉
. (3.9)

For weak coupling the dephasing rate is slow and thus we are interested in long times
t. In this limit the integral is a sum of a large number of statistically independent
terms and thus we can take the accumulated phase to be Gaussian distributed. Using
the cumulant expansion we then obtain〈

e−iϕ
〉

= exp

(
−1

2

〈[∫ t

0

dτ ∆Ω(τ)

]2
〉)

= exp

(
−2A2

~2
S̄FF [0]t

)
≡ exp (−Γϕt) . (3.10)

We have again taken the long time limit, which means that the only the zero-frequency
backaction noise spectral density enters. Eq. (3.10) yields the dephasing rate

Γϕ =
2A2

~2
S̄FF [0]. (3.11)

3.2 Efficiency ratio

On a completely heuristic level, we can easily argue that the measurement and de-
phasing rates of our setup should be related. Imagine a simple case where at t = 0 the
qubit is in a superposition state, and the detector is in some pure state |D0〉:

|ψ(0)〉 =
1√
2

(
| ↑〉+ eiϕ0 | ↓〉

)
⊗ |D0〉. (3.12)

At some later time, due to the qubit-detector interaction, the qubit can become en-
tangled with the detector, and we have

|ψ(t)〉 =
1√
2

(
| ↑〉 ⊗ |D↑(t)〉+ eiϕ0 | ↓〉 ⊗ |D↓(t)〉

)
, (3.13)

where the two detector states are not necessarily equal: |D↑(t)〉 6= |D↓(t)〉.
To see if the qubit has dephased or not, consider an off-diagonal element of its

reduced density matrix:

ρ↓↑(t) ≡ 〈↓ |ρ̂(t)| ↑〉 =
eiϕ0

2
〈D↑(t)|D↓(t)〉. (3.14)

At t = 0, |D↑(0)〉 = |D↓(0)〉 = |D0〉, and the off-diagonal density matrix element ρ↓↑(0)
just tells us the initial qubit phase. As t increases from 0, |D↑(t)〉 and |D↓(t)〉 will in
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general be different, causing the magnitude of ρ↓↑(t) to decay with time. Comparing
against Eq. (3.10), we would thus associate backaction dephasing with the fact that
the two detector states |D↑(t)〉, |D↓(t)〉 have an overlap of magnitude less than one.

In contrast, the measurement rate in Eq. (3.7) does not directly involve the over-
lap of the two detector states |D↑(t)〉, |D↓(t)〉. Rather, it involves how different the
distributions of m̂ are in these two states. Clearly, if the two states |D↑〉, |D↓〉 can be
distinguished by looking at m, then they must have an overlap < 1: measurement im-
plies dephasing. The converse is not true: the two detector states could be orthogonal
because the qubit has become entangled with extraneous detector degrees of freedom,
without these states yielding different distributions of m. Hence, dephasing does not
imply measurement.

Putting this together, one roughly expects that the measurement rate should be
bounded by the dephasing rate. We can test this expectation by using the linear-
response expressions derived in the previous section, and making use of the quantum
noise inequality of Eq. (2.47). If we assume the ideal case of zero reverse gain in our
detector, we find

η ≡ Γmeas

Γϕ
=

~2/4

S̄zzS̄FF
≤ 1. (3.15)

Thus, in the absence of any detector reverse gain, we obtain the expected result: the
dephasing rate must be at least as large as the measurement rate. This is the quantum
limit on QND qubit detection (Devoret and Schoelkopf, 2000; Averin, 2000; Korotkov
and Averin, 2001; Makhlin et al., 2001; Clerk et al., 2003). This derivation does more
than prove the bound, it also indicates what we need to do to reach it. We need both:

1. A detector with quantum ideal noise at zero frequency, that is must saturate the
inequality of Eq. (2.47) at ω = 0.

2. There must be no backaction - imprecision noise correlations at zero frequency:
S̄zF must be zero

3.2.1 Violating the quantum limit with reverse gain?

Despite the intuitive reasonableness of the above quantum limit on QND qubit de-
tection, there would seem to be a troubling loophole in the case where our detector
has a non-zero reverse gain χFI . In this case, the RHS of our so-called “quantum
limit” is now (1− r[0])2 (where r[0] is the ratio of the reverse to forward gains at zero
frequency, c.f. Eq. (2.46)), and can be made arbitrarily small by having our detectors
forward and reverse responses be symmetric. One is tempted to conclude that there
is in fact no quantum limit on QND qubit detection. This is of course an invalid in-
ference: as discussed, χFI 6= 0 implies that we must necessarily consider the effects of
extra noise injected into detector’s output port when one measures Î, as the reverse
gain will bring this noise back to the qubit, causing extra dephasing. The result is
that one can do no better than η = 1. To see this explicitly, consider the extreme case
χIF = χFI and S̄II = S̄FF = 0, and suppose we use a second detector to read-out the
output Î of the first detector. This second detector has input and output operators
F̂2, Î2; we also take it to have a vanishing reverse gain, so that we do not have to also
worry about how its output is read-out. Coupling the detectors linearly in the standard
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way (i.e. Hint,2 = ÎF̂2), the overall gain of the two detectors in series is χI2F2
· χIF ,

while the back-action driving the qubit dephasing is described by the spectral density
(χFI)

2SF2F2 . Using the fact that our second detector must itself satisfy the quantum
noise inequality, we have[

(χFI)
2
S̄F2F2

]
S̄I2I2 ≥

~2

4
(χI2F2 · χIF )

2
. (3.16)

Thus, the overall chain of detectors satisfies the usual, zero-reverse gain quantum noise
inequality, implying that we will still have η ≤ 1.

3.3 Example: QPC detector

Let’s consider again the single-channel quantum point contact detector of Sec. 2.3, and
imagine that we connect it to a single-electron, double quantum dot. The single electron
can be in either the left or the right dot; these will correspond to the σz eigenstates of
the effective qubit formed by the dot. If we assume that interdot tunnelling has been
switched off, then these two states are also energy eigenstates of the qubit. Finally,
these two states will lead to to different electrostatic potentials for the QPC electrons:
we thus have a coupling of the form given in Eq. (2.36), where the input F̂ operator
is actually a charge in the QPC.

A rigorous treatment of the measurement properties of a QPC detector is given
in (Clerk et al., 2003; Pilgram and Büttiker, 2002; Young and Clerk, 2010). Here, we
provide a more heuristic treatment which brings out the main aspects of the physics,
and also helps motivate the crucial connection between the quantum limit on QND
qubit detection, the quantum noise constraint of Eq. (2.47), and the principle of “no
wasted information”.

Recall first our results for the current and current noise of a QPC detector (c.f. Eqs. (2.33)
and (2.35)); both depend on T , the probability of electron transmission through the
QPC. Including the coupling to the qubit, each qubit eigenstate will correspond to
two different effective QPC potentials, and hence two different transmission coeffi-
cients T↑, T↓:

T↑ ≡ T0 + ∆T , T↓ ≡ T0 −∆T . (3.17)

Using the above equations for 〈Î〉 and S̄II , Eq. (3.7) for the measurement rate imme-
diately yields

Γmeas =
1

2

(∆T )2

T0(1− T0)

eV

h
. (3.18)

Turning to the dephasing rate, the backaction charge fluctuations S̄FF can be
calculated using scattering theory, see (Clerk et al., 2003). We instead take a more
heuristic approach that yields the correct answer and provides us the general insight
we are after. Let’s describe the transmitted charge m through the QPC with an ap-
proximate wavefunction; further, let’s ignore the discreteness of charge, and treat m
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to be continuous. Thus, if the qubit was initially in state α, the transmitted charge
through the QPC at time t might reasonably be described by a wavefunction

|ψQPC,α(t)〉 =

∫
dmφα(m)|m〉. (3.19)

We pick φα(m) to yield the expected (Gaussian) probability distribution of m,

|φα(m)|2 =
1√

2πσ2
exp

(
− (m− m̄α)

2

2σ2

)
, (3.20)

where the mean and variance match what we already calculated:

m̄α =
eV t

h
(T0 ±∆T ) , σ =

1

e2
S̄IIt =

eV t

h
T0 (1− T0) . (3.21)

We still have to worry about the phase of our phenomenological QPC wavefunction.
Recall that our description of the QPC is based on a simple scattering picture. An
incident electron is either transmitted with an amplitude

√
T eiθt , or reflected with

an amplitude
√

1− T eiθr . Here, θt and θr are phases in the scattering matrix. If we
use the state where all electrons are reflected as our phase reference, we see that each
transmission event is associated with a net phase shift

exp (i(θt − θr)) ≡ exp (iθ) . (3.22)

Further, in the same way that the two states of the qubit can change the transmission
probability T , they could also cause the value of this phase difference to change. We
thus write:

θ↑ = θ0 + ∆θ, θ↓ = θ0 −∆θ. (3.23)

Based on this picture, it is reasonable to write our final heuristic wavefunction in
the form

φα(m) = |φα(m)|eimθα . (3.24)

We are now in a position to calculate the backaction dephasing rate of the qubit. Using
Eq. (3.14), we see that this is just determined by the overlap of the two QPC states:

exp(−Γϕt) ≡ |〈ψQPC,↑|ψQPC,↓〉| . (3.25)

We can easily calculate the required overlap, as it amounts to a simple Gaussian
integration. We find

Γϕ = Γmeas + 2 (∆θ)
2 T0 (1− T0)

eV

h
≡ Γmeas + Γmeas,θ. (3.26)

where Γmeas is just the measurement rate given in Eq. (3.18). We note that this ex-
pressions matches exactly what is found from a rigorous calculation of the backaction
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noise S̄FF (Pilgram and Büttiker, 2002; Clerk, Girvin and Stone, 2003). We see that
if ∆θ 6= 0, the QPC misses the quantum limit on QND qubit detection: the dephas-
ing rate is larger than the measurement rate. The extra term in the dephasing rate
can be directly interpreted as the measurement rate of an experiment where one tried
to determine the qubit state by interfering transmitted and reflected beams of elec-
trons. This “phase” contribution to the dephasing rate has even been measured in
experiments using quantum hall edge states (Sprinzak et al., 2000).

Several comments are in order:

• We see that a failure to reach the QND quantum limit corresponds to the exis-
tence of “wasted information”: there are other quantities besides Î that one could
measure to learn about the state of the qubit. The corollary is that to reach the
quantum limit, there should be no wasted information: there should be no other
degrees of freedom in the detector that could provide more information on the
qubit state besides that available in Î. This idea is of course more general than just
this example, and provides a powerful way of assessing whether a given system
will reach the quantum limit.

• The same reasoning applies to the noise properties of the detector: a failure to
optimize the quantum noise inequality of Eq. (2.47) is in general associated with
“wasted information” in the detector. Many more examples of this are given in
(Clerk et al., 2010).

As a final comment, we note that reaching the quantum limit on QND qubit detec-
tion not only requires having a detector with “ideal” quantum noise, but in addition,
there must be no backaction-imprecision noise correlations. Such correlated backaction
noise is always in excess of the absolute minimum value of S̄FF required by Eq. (2.47).
As we will see, in non-QND measurements one can make use of these correlations,
and in some cases one even requires their presence to reach the quantum limit on
the measurement. In the QND case however backaction is irrelevant to what shows
up in the output of the detector, and hence one cannot make use of any backaction-
imprecision correlation. As such, the correlated backaction also represents a kind of
wasted information.

It is interesting to note that in the QPC example, the “phase” contribution to
the backaction noise is in fact perfectly correlated with the imprecision current noise.
Consider the simple case where ∆T = 0, and there is only “phase information” on
the state of the qubit. If the qubit is initially in a superposition state with a phase φ0

(c.f. Eq. (3.12)), then at time t, it follows from Eqs. (3.14),(3.24) that its off-diagonal
density matrix element will be given by

〈e−iϕ〉 = e−iϕ0

∫
dm |φ(m)|2 e−2im∆θ = e−iϕ0

∫
dmp(m)e−2im∆θ. (3.27)

Thus, if the value of m was definite, the qubit would pick up a deterministic phase shift
2∆θm; however, as m fluctuates, one gets a random phase shift and hence dephasing.
Crucially though, this random phase shift (i.e. backaction noise) is correlated with
the fluctuations of m (i.e. the imprecision current noise). In the simple limit ∆T → 0
considered here, the QPC saturates the quantum limit of Eq. (2.47), but with zero
gain: χIF = 0.
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3.4 Significance of the quantum limit on QND qubit detection

At this stage, one might legitimately wonder why anyone would care about this quan-
tum limit on qubit measurement. If our only goal is to determine whether the qubit
is up or down, why should we care about whether the qubit is dephased as slowly as
is allowed by quantum mechanics? This would seem to have no bearing on our ability
to make a measurement.

The full answer to this question involves the world of conditional measurement:
what happens to the qubit in a single run of the experiment? More concretely, in a
given run of the experiment, one obtains a specific, noisy time-trace of I(t). Given
this time trace, what can one say about the qubit? Such knowledge is of course cru-
cial if one wishes to use the measurement record in a feedback protocol to control
the qubit state. The QND qubit quantum limit plays a crucial role here: if the de-
tector reaches the quantum limit, then in a particular run of the experiment, there
is no measurement-induced qubit dephasing (see, e.g., (Korotkov, 1999)). Rather, the
qubit’s phase undergoes a seemingly random evolution which is in fact correlated with
the noise in the detector output, I(t). This phase evolution only looks like dephasing
when one does not have access to the measurement record. These fascinating ideas
will be treated by other lectures in this school.

3.5 QND quantum limit beyond linear response

What if the qubit-detector coupling A is not so small to allow the neglect of higher-
order contributions to the dephasing and measurement rates? We can still formulate
a quantum limit on the backaction dephasing rate, by saying that it is bounded below
by its value in the most ideal case. The most ideal case corresponds to the situation
in Eq. (3.13), where each qubit state leads to a different detector pure state. Further,
the most ideal situation is where the overlap of these two states is completely deter-
mined by the probability distribution of the integrated detector output m (i.e. like
our heuristic QPC discussion in the case where ∆θ = 0). If we further assume the
long-time limit and take the distributions of m corresponding to each qubit state to
be Gaussian, we end up with the quantum limit

Γϕ ≥ Γϕ,info, (3.28)

where the minimum dephasing rate required by the information gain of the measure-
ment, Γϕ,info, is given by

Γϕ,info ≡ − lim
t→∞

ln

[∫
dm
√
p↑(m)p↓(m)

]
=

1

4

(
〈Î〉↑ − 〈Î〉↓

)2

S̄II,↑ + S̄II,↑
. (3.29)

In this expression, we have allowed for the fact that detector output noise could be
different in the two qubit states. As usual, taking the long-time limit implies that only
the zero-frequency noise correlators enter this definition.
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Quantum limit on linear
amplification: the op-amp mode

4.1 Weak continuous position detection

We now turn to a more general situation, where we use our detector to amplify some
time-dependent signal which is coupled to the input. For concreteness, we start with
the case of continuous position detection, where the input signal is the position x̂ of a
simple harmonic oscillator of frequency Ω and mass M . The coupling Hamiltonian is
thus

Ĥint = Ax̂ · F̂ , (4.1)

and the output 〈Î(t)〉 will respond linearly to 〈x̂(t)〉. Similar to the case of qubit
detection, because of the intrinsic noise in the detector output (i.e. S̄II), it will take
us some time before we can resolve the signal due to the oscillator. We will focus on
weak couplings, such that we only learn about the oscillator’s motion on a timescale
long compared to its period. As such, the goal is not to measure the instantaneous
value of x(t), but rather the slow quadrature amplitudes X(t), Y (t) defined via

x̂(t) = X̂(t) cos(Ωt) + Ŷ (t) sin(Ωt). (4.2)

As we have already seen in great detail, the fluctuations of the input operator F̂
correspond to a noisy backaction force which will both heat and damp the oscillator.
Unlike the qubit measurement discussed in the last section, this backaction will impair
our ability to measure, as the measurement is not QND: [Ĥint, Ĥosc] 6= 0. The noise in
the oscillator’s momentum caused by F̂ will translate into extra position fluctuations
at later times, and hence extra noise in the output of the detector. As we will see,
this will place a fundamental limit on how well we can continuously monitor position.
Alternatively, note that the two quadrature operators X̂ and Ŷ are canonically con-
jugate. As such, we are attempting to simultaneously measure two non-commuting
observables, and hence a quantum limit is expected (i.e. we cannot know about both
X̂ and Ŷ to arbitrary precision).

For reasons that will become clear in later sections, we will term the amplifier
operation mode used here (and consequent quantum limit) the “op-amp” mode. In
this mode of operation, the detector is so weakly coupled to the signal source (i.e. the
oscillator) that it has almost no effect on the total oscillator damping. This is similar
to an ideal voltage op-amp, where the input impedance is extremely large, and thus
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there is no appreciable change in the impedance of the voltage source producing the
input signal. This mode of operation will be contrasted against the scattering mode of
operation, where the amplifier-detector coupling is no longer weak in the above sense.

4.1.1 Defining the quantum limit

To begin, let’s treat the detector output in the presence of the oscillator as a classically
noisy quantity; we will also ignore the frequency-dependence of the detector response
coefficient χIF to keep things simple. Letting x(t) denote the signal we are trying to
measure (i.e. the position of the oscillator in the absence of any corrupting backaction
effect), we then have

Itot(t) = AχIF [x(t) + δxBA(t)] + δI(t) ≡ AχIF [x(t) + δxadd(t)] , (4.3)

where

δxadd(t) = δxBA(t) + δximp(t) ≡ δxBA(t) +
δI(t)

AχIF
(4.4)

describes the total added noise of the measurement, viewed as an equivalent position
fluctuation. We see that there are two distinct contributions:

• The intrinsic output fluctuations in Î, δI(t), which when referred back to the oscil-
lator gives us the imprecision noise δximp(t). Making the coupling A (or response
χIF ) larger reduces the magnitude of δximp(t).

• Backaction fluctuations: noise in F̂ drives extra position fluctuations of the res-
onator δxBA. On a classical level, we could describe these with a Langevin equation
similar to Eq. (2.18), which would give

δxBA[ω] = Aχxx[ω]δF [ω], (4.5)

where χxx[ω] is the oscillator’s force susceptibility, and is given by

Mχxx[ω] =
(
ω2 − Ω2 + iωγ0

)−1
. (4.6)

This contribution to the added noise scales as A, and hence gets worse the larger
one makes A.

To optimize our measurement, we would of course like to make δxadd(t) as small as
possible. In the absence of backaction noise, we could make the added noise arbitrarily
small by just increasing the coupling strength A. However, because of backaction,
the best we can do is to tune A to balance the contributions form backaction and
imprecision; we will be left with something non-zero.

To state the quantum limit on position detection, we first define the measured posi-
tion xmeas(t) as simply the total detector output Itot(t) referred back to the oscillator:

xmeas(t) = Itot(t)/(AχIF ). (4.7)

If there was no added noise, and further, if the oscillator was in thermal equilibrium at
temperature T , the spectral density describing the fluctuations δxmeas(t) would simply
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be the equilibrium fluctuations of the oscillator, as given by the fluctuation-dissipation
theorem:

S̄meas
xx [ω] = S̄eq

xx[ω, T ] = ~ coth

(
~ω

2kBT

)
[−Im χxx[ω]] (4.8)

=
x2

ZPF(1 + 2nB)

2

∑
σ=±

γ0

(ω − σΩ)2 + (γ0/2)2
. (4.9)

Here, γ0 is the intrinsic damping rate of the oscillator, which we have assumed to be
� Ω.

Including the added noise, and for the moment ignoring the possibility of any
additional oscillator damping due to the coupling to the detector, the above result
becomes

S̄meas
xx [ω] = S̄eq

xx[ω, T ] + S̄add
xx [ω] (4.10)

where the last term is the spectral density of the added noise (both backaction and
imprecision noise).

We can now, finally, state the standard quantum limit on continuous position
detection (which is equivalent to that on linear, phase-preserving amplification): at
each frequency ω, we must have

S̄add
xx [ω] ≥ S̄eq

xx[ω, T = 0]. (4.11)

The spectral density of the added noise cannot be made arbitrarily small: at each
frequency, it must be at least as large as the corresponding zero-point noise.

We now refine the above result to include the presence of back-action damping of
the oscillator (at a rate γBA) due to the coupling to the detector. Such damping is
described by the asymmetry of the detector’s SFF [ω] quantum noise spectrum, as in
Eq. (2.25). Including non-zero backaction damping, the added noise is defined as

S̄meas
xx [ω] =

γ0

γBA + γ0
S̄eq
xx[ω, T ] + S̄add

xx [ω], (4.12)

where the susceptibility χxx now involves the total damping of the oscillator, i.e.:

Mχxx[ω] =
(
ω2 − Ω2 + iω(γ0 + γBA)

)−1
. (4.13)

With this definition, the quantum limit on the added noise is unchanged from the limit
stated in Eq. (4.11).

4.2 A possible correlation-based loophole?

Our heuristic formulation of the quantum limit naturally leads to a possible concern.
Even though quantum mechanics may require a position measurement to have a back-
action (as position and momentum are conjugate quantities), couldn’t this backaction
noise be perfectly anti-correlated with the imprecision noise? If this were the case, the
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added noise δx(t) (which is the sum of the two contributions, c.f. Eq. (4.4)) could be
made to vanish.

One might hope that this sort of loophole would be explicitly forbidden by the
quantum noise inequality of Eq. (2.47). However, this is not the case. Even in the ideal
case of zero reverse gain, one achieve a situation where backaction and imprecision are
perfectly correlated at a given non-zero frequency ω. One needs:

• The correlator S̄IF [ω] should purely imaginary; this implies that the part of F (t)
that is correlated with I(t) is 90 degrees out of phase. Note that S̄IF [ω] can only
be imaginary at non-zero frequencies.

• The magnitude of S̄IF [ω] should be larger than ~/2
Under these circumstances, one can verify that there is no additional quantum con-
strain on the noise beyond what exists classically, and hence the perfect correlation
condition of S̄FF [ω]S̄II [ω] = |S̄IF [ω]|2 is allowable. The π/2 phase of the backaction-
imprecision correlations are precisely what is needed to make δxadd[ω] vanish at the
oscillator resonance, ω = Ω.

As might be expected, this seeming loophole is not a route towards amplification
free from any quantum constraints. The problem is that we have not been sufficiently
careful to specify what we want our detector to do, namely the condition that the
detector amplifies the motion of the oscillator– the signal should be “bigger” at the
output than it is at the input. It is only when we insist on amplification that there are
quantum constraints on added noise; a passive transducer need not add any noise. On
a heuristic level, one could view amplification as an effective expansion of the phase
space of the oscillator. Such a pure expansion is of course forbidden by Liouville’s
theorem, which tells us that volume in phase space in conserved. The way out is to
introduce additional degrees of freedom, such that for these degrees of freedom phase
space contracts. Quantum mechanically such degrees of freedom necessarily have noise
associated with them (at the very least, zero-point noise); this then is the source of
the limit on added noise. We will see that heuristic argument can be converted into a
rigorous formulation of the quantum limit (albeit of a different sort) in Sec. 5.

More concretely, we ned to define what we mean by amplification in our linear
response detector. We can then rigorously insist that our detector amplifies. The result
will be additional constraints beyond the quantum noise inequality of Eq. (2.47) which
make the perfect correlation described above impossible.

4.3 Power gain

To be able to say that our detector truly amplifies the motion of the oscillator, it is
not sufficient to simply say the response function χIF must be large (note that χIF
is not dimensionless!). Instead, true amplification requires that the power delivered
by the detector to a following amplifier be much larger than the power drawn by the
detector at its input– i.e., the detector must have a dimensionless power gain GP [ω]
much larger than one. If the power gain was not large, we would need to worry about
the next stage in the amplification of our signal, and how much noise is added in
that process. Having a large power gain means that by the time our signal reaches
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Fig. 4.1 (Color online) Schematic of a generic linear-response position detector, where an

auxiliary oscillator y is driven by the detector output.

the following amplifier, it is so large that the added noise of this following amplifier is
unimportant

To make the above more precise, we start with the ideal case of no reverse gain,
χFI = 0. We will define the power gain GP [ω] of our generic position detector in
a way that is analogous to the power gain of a voltage amplifier. Imagine we drive
the oscillator we are trying to measure (whose position is x) with a force 2FD cosωt;
this will cause the output of our detector 〈Î(t)〉 to also oscillate at frequency ω. To
optimally detect this signal in the detector output, we further couple the detector
output I to a second oscillator with natural frequency ω, mass M , and position y:
there is a new coupling term in our Hamiltonian, H ′int = BÎ · ŷ, where B is a coupling
strength. The oscillations in 〈I(t)〉 will now act as a driving force on the auxiliary
oscillator y (see Fig 4.1). We can consider the auxiliary oscillator y as a “load” we are
trying to drive with the output of our detector.

To find the power gain, we need to consider both Pout, the power supplied to the
output oscillator y from the detector, and Pin, the power fed into the input of the
amplifier. Consider first Pin. This is simply the time-averaged power dissipation of the
input oscillator x caused by the back-action damping γBA[ω]. Using a bar to denote a
time average, we have

Pin ≡ MγBA[ω] · ẋ2 = MγBA[ω]ω2|χxx[ω]|2F 2
D. (4.14)

Note that the oscillator susceptibility χxx[ω] includes the effects of γBA, c.f. Eq. (4.13).
Next, we need to consider the power supplied to the “load” oscillator y at the detec-

tor output. This oscillator will have some intrinsic, detector-independent damping γld,
as well as a back-action damping γout. In the same way that the back-action damping
γBA of the input oscillator x is determined by the quantum noise in F̂ (cf. Eq. (2.25)),
the back-action damping of the load oscillator y is determined by the quantum noise
in the output operator Î:

γout[ω] =
B2

Mω
[−Im χII [ω]]

=
B2

M~ω

[
SII [ω]− SII [−ω]

2

]
, (4.15)
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where χII is the linear-response susceptibility which determines how 〈Î〉 responds to
a perturbation coupling to Î:

χII [ω] = − i
~

∫ ∞
0

dt
〈[
Î(t), Î(0)

]〉
eiωt. (4.16)

As the oscillator y is being driven on resonance, the relation between y and I is given
by y[ω] = χyy[ω]I[ω] with χyy[ω] = −i[ωMγout[ω]]−1. From conservation of energy, we
have that the net power flow into the output oscillator from the detector is equal to
the power dissipated out of the oscillator through the intrinsic damping γld. We thus
have

Pout ≡ Mγld · ẏ2

= Mγldω
2|χyy[ω]|2 · |BAχIFχxx[ω]FD|2

=
1

M

γld

(γld + γout[ω])
2 · |BAχIFχxx[ω]FD|2. (4.17)

Using the above definitions, we find that the ratio between Pout and Pin is inde-
pendent of γ0, but depends on γld:

Pout

Pin
=

1

M2ω2

A2B2|χIF [ω]|2

γout[ω]γBA[ω]

γld/γout[ω]

(1 + γld/γout[ω])
2 . (4.18)

We now define the detector power gain GP [ω] as the value of this ratio maximized
over the choice of γld . The maximum occurs for γld = γout[ω] (i.e. the load oscillator
is “matched” to the output of the detector), resulting in:

GP [ω] ≡ max

[
Pout

Pin

]
=

1

4M2ω2

A2B2|χIF |2

γoutγBA

=
|χIF [ω]|2

4Im χFF [ω] · Im χII [ω]
(4.19)

In the last line, we have used the relation between the damping rates γBA[ω] and
γout[ω] and the linear-response susceptibilities χFF [ω] and χII [ω], c.f. Eq. (2.29). We
thus find that the power gain is a simple dimensionless ratio formed by the three
different response coefficients characterizing the detector, and is independent of the
coupling constants A and B. As we will see, it is completely analogous to the power
gain of a voltage amplifier, which is also determined by three parameters: the voltage
gain, the input impedance and the output impedance.

Finally, we note that the above results can be generalized to include a non-zero
detector reverse gain, χFI , see (Clerk et al., 2010). We saw previously in Sec. 4.2 that
if χFI = χ∗IF , then there is no additional quantum constraint on the noise beyond
what exists classically. In this case of a perfectly symmetric detector, one can show
that the power gain is at most equal to one: true amplification is never possible in this
case.
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4.4 Simplifications for a detector with ideal quantum noise and
large power gain

Requiring both the quantum noise inequality in Eq. (2.47) to be saturated at frequency
ω as well as a large power gain (i.e. GP [ω] � 1) leads to some important additional
constraints on the detector, as derived in Appendix I of (Clerk et al., 2010):

• (2/~)Im S̄zF [ω] is small like 1/
√
GP [ω]. Hence, the possibility of having a perfect

backaction-imprecision noise correlations as discussed in Sec. 4.2 is excluded.

• The detector’s effective temperature must be much larger than ~ω; one finds

kBTeff [ω] ∼
√
GP [ω]~ω. (4.20)

Conversely, it is the largeness of the detector’s effective temperature that allows
it to have a large power gain.

4.5 Derivation of the quantum limit

We now turn to a rigorous proof of the quantum limit on the added noise given
in Eq. (4.11). From the classical-looking Eq. (4.4), we expect that the symmetrized
quantum noise spectral density describing the added noise will be given by

S̄xx,add[ω] =
S̄II

|χIF |2A2
+A2 |χxx|2 S̄FF +

2Re
[
χ∗IF (χxx)

∗
S̄IF

]
|χIF |2

(4.21)

=
S̄zz
A2

+A2 |χxx|2 S̄FF + 2Re
[
(χxx)

∗
S̄zF

]
. (4.22)

In the second line, we have introduced the imprecision noise S̄zz and imprecision
backaction correlation S̄zF as in Eq. (2.41). We have also omitted writing the explicit
frequency dependence of the gain χIF , susceptibility χxx, and noise correlators; they
should all be evaluated at the frequency ω. Finally, the oscillator susceptibility χxx
here is given by Eq. (4.13), and includes the effects of backaction damping. While
we have motivated this equation from a seemingly classical noise description, the full
quantum theory also yields the same result: one simply calculates the detector output
noise perturbatively in the coupling to the oscillator (Clerk, 2004).

The first step in determining the limit on the added noise is to consider its depen-
dence on the coupling strength strength A. If we ignore for a moment the detector-
dependent damping of the oscillator, there will be an optimal value of the coupling
strength A which corresponds to a trade-off between imprecision noise and back-action
(i.e. first and second terms in Eq. (4.21)). We would thus expect S̄xx,add[ω] to attain
a minimum value at an optimal choice of coupling A = Aopt where both these terms
make equal contributions. Defining φ[ω] = argχxx[ω], we thus have the bound

S̄xx,add[ω] ≥ 2|χxx[ω]|
(√

S̄zzS̄FF + Re
[
e−iφ[ω]S̄zF

])
, (4.23)

where the minimum value at frequency ω is achieved when

A2
opt =

√
S̄zz[ω]

|χxx[ω]|2S̄FF [ω]
. (4.24)
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Using the inequality X2 + Y 2 ≥ 2|XY | we see that this value serves as a lower bound
on S̄xx,add even in the presence of detector-dependent damping. In the case where
the detector-dependent damping is negligible, the RHS of Eq. (4.23) is independent of
A, and thus Eq. (4.24) can be satisfied by simply tuning the coupling strength A; in
the more general case where there is detector-dependent damping, the RHS is also a
function of A (through the response function χxx[ω]), and it may no longer be possible
to achieve Eq. (4.24) by simply tuning A.

While Eq. (4.23) is certainly a bound on the added displacement noise S̄xx,add[ω],
it does not in itself represent the quantum limit. Reaching the quantum limit re-
quires more than simply balancing the detector back-action and intrinsic output noises
(i.e. the first two terms in Eq. (4.21)); one also needs a detector with “quantum-ideal”
noise properties, that is a detector which optimizes Eq. (2.47). Using the quantum
noise constraint of Eq. (2.47) to further bound S̄xx,add[ω], we obtain

S̄xx,add[ω] ≥ ~ |χxx[ω]|

[√(
1 + ∆

[
S̄zF
~/2

])
+

∣∣∣∣ S̄zF~/2

∣∣∣∣2 +
Re

[
e−iφ[ω]S̄zF

]
~/2

]
,(4.25)

where the function ∆[z] is defined in Eq. (2.48). The minimum value of S̄xx,add[ω] in
Eq. (4.25) is now achieved when one has both an optimal coupling (i.e. Eq. (4.24))
and a quantum limited detector, that is one which satisfies Eq. (2.47) as an equality.

Next, we consider the relevant case where our detector is a good amplifier and
has a power gain GP [ω] � 1 over the width of the oscillator resonance. As we have
discussed, this implies that the ratio S̄zF is purely real, up to small 1/GP corrections
(see Appendix I of Ref. (Clerk et al., 2010) for more details). This in turn implies that
∆[2S̄zF /~] = 0; we thus have

S̄xx,add[ω] ≥ ~|χxx[ω]|

√1 +

(
S̄zF
~/2

)2

+ cos (φ[ω])
S̄zF
~/2

 . (4.26)

Finally, as there is no further constraint on S̄zF (beyond the fact that it is real),
we can minimize the expression over its value. The minimum S̄xx,add[ω] is achieved for
a detector whose cross-correlator satisfies

S̄zF [ω]
∣∣∣
optimal

= −~
2

cotφ[ω], (4.27)

with the minimum value of the added noise being given precisely by

S̄xx,add[ω]
∣∣∣
min

= ~|Im χxx[ω]| = lim
T→0

S̄xx,eq[ω, T ], (4.28)

in agreement with Eq. (4.11). Thus, in the limit of a large power gain, we have that
at each frequency, the minimum displacement noise added by the detector is precisely
equal to the noise arising from a zero temperature bath. This conclusion is irrespective
of the strength of the intrinsic (detector-independent) oscillator damping.

We have thus derived the amplifier quantum limit (in the context of position de-
tection) for a two-port amplifier used in the “op-amp” mode of operation. Moreover,
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our derivation shows that to reach the quantum-limit on the added displacement noise
S̄xx,add[ω] with a large power gain, one needs:

1. A detector with quantum limited noise properties, that is one which optimizes
the inequality of Eq. (2.47). Similar to our discussion of QND qubit detection,
optimizing this inequality corresponds to the heuristic requirement of “no wasted
information”.

2. A coupling A which satisfies Eq. (4.24).

3. A detector cross-correlator S̄IF which satisfies Eq. (4.27).

It is worth stressing that Eq. (4.27) implies that it will not in general be possible
to achieve the quantum limit simultaneously at all frequencies. On resonance, this
condition tells us that S̄zF [ω] should be zero. In contrast, far from resonance, it implies
that one needs strong correlations, S̄zF � ~/2. There are systems in which one is
indeed interested in minimizing the added noise far from resonance. For example, in
interferometers used for gravitational wave detection, the test masses used are almost
in the free-mass limit, and thus one is interested in frequencies much much larger
than resonance frequency of the test mass. A way to achieve such large imprecision-
backaction correlations using a nonlinear cavity detector was discussed recently in
(Laflamme and Clerk, 2011).

If one focuses on optimizing S̄xx,add[ω] at resonance (i.e. ω = Ω), and if one is using
a quantum-limited detector with a large power gain (kBTeff � ~Ω), the remaining
condition on the coupling A, Eq. (4.24), may be written

γBA[Aopt]

γ0 + γBA[Aopt]
=

~Ω

4kBTeff
. (4.29)

As γBA[A] ∝ A2 is the detector-dependent damping of the oscillator, we thus have that
to achieve the quantum-limited value of S̄xx,add[Ω] with a large power gain, one needs
the intrinsic damping of the oscillator to be much larger than the detector-dependent
damping. The detector-dependent damping must be small enough to compensate the
large effective temperature of the detector; if the bath temperature satisfies ~Ω/kB �
Tbath � Teff , Eq. (4.29) implies that at the quantum limit, the temperature of the
oscillator will be given by

Tosc ≡
γBA · Teff + γ0 · Tbath

γBA + γ0
→ ~Ω

4kB
+ Tbath. (4.30)

Thus, at the quantum limit and for large Teff , the detector raises the oscillator’s
temperature by ~Ω/4kB.1 As expected, this additional heating is only half the zero-
point energy; in contrast, the quantum-limited value of S̄xx,add[ω] corresponds to the
full zero-point result, as it also includes the contribution of the intrinsic output noise
of the detector.

Finally, we return to Eq. (4.25); this is the constraint on the added noise S̄xx,add[ω]
before we assumed our detector to have a large power gain, and consequently a large

1If in contrast our oscillator was initially at zero temperature (i.e. Tbath = 0), one finds that
the effect of the back-action (at the quantum limit and for GP � 1) is to heat the oscillator to a
temperature ~Ω/(kB ln 5) ' 0.62~Ω/kB.
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Teff . Note crucially that if we did not require a large power gain, then there need not
be any added noise. Without the assumption of a large power gain, the ratio S̄IF /χIF
can be made imaginary with a large magnitude. In this limit, 1 + ∆[2S̄IF /χIF ] → 0:
the quantum constraint on the amplifier noises (e.g. the RHS of Eq. (2.47)) vanishes.
One can then easily use Eq. (4.25) to show that the added noise S̄xx,add[ω] can be
zero.

4.6 Noise temperature

There is an alternate but roughly equivalent way of phrasing the amplifier quantum
limit we have been discussing, where the crucial quantity to be bounded is the so-called
“noise temperature” TN [ω]. For a given frequency ω, this is defined via the equation

S̄eq
xx[ω, T + TN [ω]] ≡ S̄eq

xx[ω, T ] + S̄add
xx [ω], (4.31)

in the limit where T � ~ω (which ensures that the definition of TN is independent of
T ) 2. In words, the added noise position fluctuations at a frequency ω can be viewed as
an effective heating of the oscillator from a temperature T to a temperature T+TN [ω].
One finds

2kBTN [ω]

ω
=

S̄add
xx [ω]

−Im χxx[ω]
=

1

−Im χxx[ω]

(
Szz
A2

+A2 |χxx|2 S̄FF + 2Re
(
χ∗xxS̄zF

))
.

(4.32)

Our bound on the added noise spectral density (in the high power gain limit) imme-
diately implies that for large power gain,

kBTN [ω] ≥ ~ω/2. (4.33)

In complete analogy to the quantum limit on the added noise, reaching the quantum
limit on the noise temperature first requires one to balance the contributions from
imprecision and backaction by, e.g., tuning the value of the coupling A. For the noise
temperature, note that the imprecision contribution scales as 1/|χxx|, whereas the
backaction contribution scales as |χxx|. Thus, for the noise temperature, one could
keep A fixed, and balance backaction and imprecision noise contributions by tuning
the value of the oscillator susceptibility |χxx[ω]| (e.g. imagine one could tune the value
of Ω). In a similar fashion, as opposed to tuning the value of the detector cross-
correlator S̄zF , one could tune the phase of χxx. While this way of thinking about
the optimization may seem quite unnatural in the context of a position detector, it is
completely natural if we now think of our detector as a voltage amplifier. As we will
see, in this case the role of χxx is played Zsrc, the source impedance of the system
producing the signal that is to be amplified.

4.7 Quantum limit on an “op-amp” style voltage amplifier

We now use our general linear-response machinery to tackle the quantum limit on
the noise temperature of a voltage amplifier, again used in the “op-amp” mode of

2Other, less common, definitions of the noise temperature also exist in the literature. For example,
(Caves, 1982) defines the noise temperature using Eq. (4.31)), but takes the initial temperature T to be
zero. With this definition, the quantum limit takes the somewhat awkward form kBTN [ω] ≥ ~ω/ ln(3).
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Fig. 4.2 Schematic of a linear voltage amplifier, including a reverse gain λI . Ṽ and Ĩ repre-

sent the standard voltage and current noises of the amplifier, as discussed further in the text.

The case with reverse gain is discussed in Sec. 5.2.

operation. For the most part, this just involves a simple relabelling of various quantities
in our position detector; this is done in Table 4.1. The input signal to the detector is
now a voltage vin(t), and the output quantity that is read out is also a voltage: the
output operator Î thus now becomes an operator V̂out.

Fig. 4.2 shows a standard schematic description of a voltage amplifier. The input
voltage to be amplified vin(t) is produced by a circuit which has a Thevenin-equivalent
impedance Zs, the source impedance. The amplifier itself has an input impedance Zin

and an output impedance Zout, as well as a voltage gain coefficient λV : assuming no
current is drawn at the output (i.e. Zload →∞ in Fig. 4.2), the output voltage Vout(t)
is simply λV times the voltage across the input terminals of the amplifier. We focus
here on the simple case of no reverse gain.

The added noise of the amplifier is standardly represented by two noise sources
placed at the amplifier input. There is both a voltage noise source Ṽ (t) in series with
the input voltage source, and a current noise source Ĩ(t) in parallel with input volt-
age source (Fig. 4.2). The voltage noise produces a fluctuating voltage Ṽ (t) (spectral
density S̄Ṽ Ṽ [ω]) which simply adds to the signal voltage at the amplifier input, and is
amplified at the output; as such, it is completely analogous to the imprecision noise
S̄zz = S̄II/|χIF |2 of our linear response detector. In contrast, the current noise source
of the voltage amplifier represents back-action: this fluctuating current (spectral den-
sity S̄Ĩ Ĩ [ω]) flows back across the parallel combination of the source impedance and
amplifier input impedance, producing an additional fluctuating voltage at its input.
The current noise is thus analogous to the back-action noise S̄FF of our generic linear
response detector.

Putting the above together, and treating for the moment the output voltage as a
classically noisy variable, we have

vout,tot(t) = λV

[
Zin

Zin + Zs

[
vin(t) + Ṽ (t)

]
− ZsZin

Zs + Zin
Ĩ(t)

]
' λV

[
vin(t) + Ṽ (t)− ZsĨ(t)

]
. (4.34)

In the second line, we have taken the usual limit of an ideal voltage amplifier which
has an infinite input impedance (i.e. the amplifier draws zero current). We are left
with an equation that is completely analogous to the corresponding Eq. (4.3) for a
position detector. For simplicity, we have ignored any frequency dependence of λV , Zs

and Zin; these are easily restored.
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Table 4.1 Correspondence between position detector and voltage amplified.

Quantity Position detector Voltage amplifier

Input signal x̂(t) v̂in(t)

Output operator Î(t) V̂out(t)

Backaction operator F̂ [ω] Q̂[ω] = ˆ̃I[ω]/(−iω)
(i.e. quantity which couples to input signal)

Linear gain coefficient χIF [ω] λV [ω] = χVoutQ[ω]

Imprecision noise operator z[ω] = I[ω]/χIF [ω] Ṽ [ω] = V̂out[ω]/λV [ω]
Imprecision noise S̄zz[ω] = S̄II [ω]/|χIF [ω]|2 S̄Ṽ Ṽ [ω]
Backaction noise S̄FF [ω] S̄Ĩ Ĩ [ω]/ω2

Backaction-imprecision correlator S̄zF [ω] S̄Ṽ Ĩ [ω]/(iω)
Detector-induced input dissipation −Im χFF [ω] = MωγBA[ω] −Im χQQ[ω] = 1

ωRe 1
Zin[ω]

Detector-induced output dissipation −Im χII [ω] = Mωγy[ω] −Im χVoutVout
[ω] = ωReZout[ω]

Power gain GP
|χIF [ω]|2/4

Im χFF [ω]·Im χII [ω]
|λV |2/4

Re (Zout)Re (1/Zin)

If we refer the output voltage fluctuations back to the input (via λV ) to obtain the
measured voltage fluctuations, we find they are described by a spectral density

S̄V V,tot[ω] = S̄vinvin [ω] + S̄V V,add[ω]. (4.35)

As in our discussion of position detection, we have used the fact that quantum expres-
sions for symmetrized noise densities will match what is expected from the classical
theory. Here S̄vinvin [ω] is the spectral density of the voltage fluctuations of the input
signal vin(t); assuming the signal source is in equilibrium at temperature T , they will
be given by

S̄vinvin [ω] = Re Zs[ω]~ω coth (~ω/2kBT ) , (4.36)

consistent with the fluctuation dissipation theorem. In contrast, S̄V V,add is the total
amplifier added noise (referred to the input), and has both a backaction and impreci-
sion noise contribution:

S̄V V,add[ω] = S̄Ṽ Ṽ + |Zs|2 S̄Ĩ Ĩ − 2Re
[
Z∗s S̄Ṽ Ĩ

]
. (4.37)

For clarity, we have dropped the frequency index for the spectral densities appearing
on the RHS of this equation.

Finally, we can define the noise temperature exactly as in Eq.(4.32) by viewing the
added noise at frequency ω as being due to an effective heating of the source from
temperature T � ~ω/kB to T + TN [ω]. Writing Zs = |Zs|eiφ, we find:

2kBTN =
1

cosφ

[
S̄Ṽ Ṽ
|Zs|

+ |Zs|S̄Ĩ Ĩ − 2Re
(
e−iφS̄Ṽ Ĩ

)]
(4.38)

We can now apply the same line of reasoning as we used for the TN of a position
detector, and thus in the large power-gain limit, the quantum limit of Eq. (4.33)
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applies to TN [ω]. Achieving the quantum limit requires optimizing the quantum noise
constraint of Eq. (2.47), which here takes the form

S̄Ṽ Ṽ [ω]S̄Ĩ Ĩ [ω]−
[
Im S̄Ṽ Ĩ

]2 ≥ (~ω
2

)2

. (4.39)

In addition, one also needs to balance the contribution of backaction and impreci-
sion (c.f. Eq. (4.23)), as well as properly take advantage of any backaction-imprecision
correlations (c.f. Eq. (4.27)). Unlike the oscillator case, this is most naturally done
by tuning both the magnitude and phase of the source impedance Zs. If one simply
minimizes TN [ω] with respect to Zs, one finds a completely classical minimum bound
on TN,

kBTN ≥
√
S̄Ṽ Ṽ S̄Ĩ Ĩ −

[
Im S̄Ṽ Ĩ

]2 − Re S̄Ṽ Ĩ , (4.40)

where the minimum is achieved for an optimal source impedance which satisfies:

|Zs[ω]|opt =

√
S̄Ṽ Ṽ [ω]

S̄Ĩ Ĩ [ω]
≡ ZN (4.41)

sinφ[ω]
∣∣
opt

= −
Im S̄Ṽ Ĩ [ω]√
S̄Ṽ Ṽ [ω]S̄Ĩ Ĩ [ω]

(4.42)

Recall that in the position detector, achieving the quantum limit required a cou-
pling A so weak that the detector-induced damping γBA was much less than the intrin-
sic oscillator damping (cf. Eq. (4.29)). Similarly, in the present case, one can show (see
(Clerk et al., 2010)) that for a large power-gain amplifier with ideal quantum noise,
the noise impedance ZN satisfies∣∣∣∣ ZN[ω]

Re Zin[ω]

∣∣∣∣ =
1

2
√
GP [ω]

� 1. (4.43)

It follows that |ZN| � |Zin| in the large power gain, large effective temperature regime
of interest, thus justifying the form of Eq. (4.37).

4.7.1 Role of noise cross-correlations

Before leaving the topic of a linear voltage amplifier, we pause to note the role of
cross-correlations in current and voltage noise in reaching the quantum limit. First,
note from Eq. (4.42) that in both the classical and quantum treatments, the noise
impedance ZN of the amplifier will have a reactive part (i.e. Im ZN 6= 0) if there
are out-of-phase correlations between the amplifier’s current and voltage noises (i.e. if
Im SV I 6= 0). Thus, if such correlations exist, it will not be possible to minimize the
noise temperature (and hence, reach the quantum limit), if one uses a purely real
source impedance Zs.

More significantly, note that the final classical expression for the noise temperature
TN explicitly involves the real part of the SV I correlator (cf. Eq. (4.40)). In contrast,
we have argued that in the quantum case, Re S̄V I must be zero if one wishes to reach
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the quantum limit while having a large power gain (cf. Sec. 4.4 and Appendix I of
(Clerk et al., 2010)); as such, this quantity does not appear in the final expression
for the minimal TN. It also follows that to reach the quantum limit while having a
large power gain, an amplifier cannot have significant in-phase correlations between
its current and voltage noise.

This last statement can be given a heuristic explanation. If there are out-of-phase
correlations between current and voltage noise, we can easily make use of these by ap-
propriately choosing our source impedance. However, if there are in-phase correlations
between current and voltage noise, we cannot use these simply by tuning the source
impedance. We could however have used them by implementing feedback in our am-
plifier. The fact that we have not done this means that these correlations represent a
kind of missing information; as a result, we must necessarily miss the quantum limit.
In Sec. 5.2.2, we explicitly give an example of a voltage amplifier which misses the
quantum limit due to the presence of in-phase current and voltage fluctuations.



5

Quantum limit on a linear-amplifier:
scattering mode

We now consider an alternate mode of amplifier operation, where the input signal is the
amplitude of a wave incident on the amplifier, and the output signal is the amplitude
of a wave leaving the amplifier. Unlike the op-amp mode considered above, backaction
is irrelevant here: the assumption is that the input signal entering the amplifier is
completely insensitive to any fluctuations emanating from the amplifier. To achieve
this, one typically has to impedance match the signal source to the amplifier input so
that there are no reflections. This is very different from the op-amp mode, where the
amplifier input impedance is much larger than the source impedance. This condition
ensures that in the op-amp mode, the coupling to the amplifier only weakly increases
the dissipation of the signal source. In contrast, the impedance matching implies that
the coupling to the amplifier will have a more pronounced impact on the signal source
dissipation.

While the quantum limit on the added noise of an amplifier in this scattering mode
of operation has the same form as that in the op-amp mode, we will see that they are
not equivalent: an amplifier can be quantum limited in one mode, but fail to reach the
quantum limit in the other mode.

5.1 Caves-Haus formulation of the scattering-mode quantum limit

The derivation of the amplifier quantum limit in the scattering mode of operation is
in many ways better known that the op-amp quantum limit presented above, and is
simpler to present. This derivation is originally due to (Haus and Mullen, 1962), and
was both clarified and extended by (Caves, 1982); the amplifier quantum limit was
also motivated in a slightly different manner by (Heffner, 1962).1

The starting assumption of this derivation is that both the input and output ports
of the amplifier can be described by sets of bosonic modes. If we focus on a narrow
bandwidth centered on frequency ω, we can describe a classical signal E(t) in terms of
a complex number a defining the amplitude and phase of the signal (or equivalently
the two quadrature amplitudes) (Haus and Mullen, 1962; Haus, 2000)

E(t) ∝ i[ae−iωt − a∗e+iωt]. (5.1)

1Note that (Caves, 1982) provides a thorough discussion of why the derivation of the amplifier
quantum limit given in (Heffner, 1962) is not rigorously correct
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In the quantum case, the two signal quadratures of E(t) (i.e. the real and imaginary
parts of a(t)) cannot be measured simultaneously because they are canonically conju-
gate; this is in complete analogy to a harmonic oscillator (cf. Eq. (4.2)). As a result
a, a∗ must be elevated to the status of photon ladder operators: a→ â, a∗ → â† .

Consider the simplest case, where there is only a single mode at both the input
and output, with corresponding operators â and b̂. It follows that the input signal
into the amplifier is described by the expectation value 〈â〉, while the output signal is

described by 〈b̂〉. Correspondingly, the symmetrized noise in both these quantities is
described by

(∆a)
2 ≡ 1

2

〈
{â, â†}

〉
− |〈â〉|2 , (5.2)

with an analogous definition for (∆b)2.
To derive a quantum limit on the added noise of the amplifier, one uses two simple

facts. First, both the input and the output operators must satisfy the usual commu-
tation relations: [

â, â†
]

= 1,
[
b̂, b̂†

]
= 1 (5.3)

Second, the linearity of the amplifier and the fact that it is phase preserving (i.e. both
signal quadratures are amplified the same way) implies a simple relation between the

output operator b̂ and the input operator â:

b̂ =
√
Gâ, b̂† =

√
Gâ†, (5.4)

where G is the dimensionless “photon number gain” of the amplifier. It is immediately
clear however this expression cannot possibly be correct as written because it violates
the fundamental bosonic commutation relation [b̂, b̂†] = 1. We are therefore forced to
write:

b̂ =
√
Gâ+ F̂ , b̂† =

√
Gâ† + F̂†, (5.5)

where F̂ is an operator representing additional noise added by the amplifier. Based
on the discussion of the previous subsection, we can anticipate what F̂ represents: it
is noise associated with the additional degrees of freedom which must invariably be
present in a phase-preserving amplifier.

As F̂ represents noise, it has a vanishing expectation value; in addition, one also as-
sumes that this noise is uncorrelated with the input signal, implying [F̂ , â] = [F̂ , â†] =

0 and 〈F̂ â〉 = 〈F̂ â†〉 = 0. Insisting that [b̂, b̂†] = 1 thus yields[
F̂ , F̂†

]
= 1−G. (5.6)

The question now becomes how small can we make the noise described by F̂? Using
Eqs. (5.5), the noise at the amplifier output ∆b is given by
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(∆b)
2

= G (∆a)
2

+
1

2

〈
{F̂ , F̂†}

〉
≥ G (∆a)

2
+

1

2

∣∣∣〈[F̂ , F̂†]
〉∣∣∣

≥ G (∆a)
2

+
|G− 1|

2
. (5.7)

We have used here a standard inequality to bound the expectation of {F̂ , F̂†}. The first
term here is simply the amplified noise of the input, while the second term represents
the noise added by the amplifier. Note that if there is no amplification (i.e. G =
1), there need not be any added noise. However, in the more relevant case of large
amplification (G� 1), the added noise cannot vanish. It is useful to express the noise
at the output as an equivalent noise at (“referred to”) the input by simply dividing
out the photon gain G. Taking the large-G limit, we have

(∆b)
2

G
≥ (∆a)

2
+

1

2
. (5.8)

Thus, we have a very simple demonstration that an amplifier with a large photon
gain must add at least half a quantum of noise to the input signal. Equivalently, the
minimum value of the added noise is simply equal to the zero-point noise associated
with the input mode; the total output noise (referred to the input) is at least twice
the zero point input noise. Note the complete analogy to the quantum limit we found
for the added noise of an op-amp amplifier (c.f. Eqs. (4.11) and (4.33)).

As already discussed, the added noise operator F̂ is associated with additional
degrees of freedom (beyond input and output modes) necessary for phase-preserving
amplification. To see this more concretely, note that every linear amplifier is inevitably
a non-linear system consisting of an energy source and a ‘spigot’ controlled by the input
signal which redirects the energy source partly to the output channel and partly to
some other channel(s). Hence there are inevitably other degrees of freedom involved in
the amplification process beyond the input and output channels. An explicit example
is the quantum parametric amplifier (see, e.g., Sec. V.C in (Clerk et al., 2010)).

To see explicitly the role of the additional degrees of freedom, note first that for
G > 1 the RHS of Eq. (5.6) is negative. Hence the simplest possible form for the added
noise is:

F̂ =
√
G− 1d̂†, F̂† =

√
G− 1d̂, (5.9)

where d̂ and d̂† represent a single additional mode of the system. This is the minimum
number of additional degrees of freedom that must inevitably be involved in the am-
plification process. Note that for this case, the inequality in Eq. (5.7) is satisfied as an
equality, and the added noise takes on its minimum possible value. If instead we had,
say, two additional modes (coupled inequivalently):

F̂ =
√
G− 1(cosh θd̂†1 + sinh θd̂2) (5.10)

it is straightforward to show that the added noise is inevitably larger than the min-
imum. This again can be interpreted in terms of wasted information, as the extra
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Fig. 5.1 (Color online) Schematic of a two-port bosonic amplifier. Both the input and out-

puts of the amplifier are attached to transmission lines. The incoming and outgoing wave

amplitudes in the input (output) transmission line are labelled âin, âout (b̂in, b̂out) respec-

tively. The voltages at the end of the two lines (V̂a, V̂b) are linear combinations of incoming

and outgoing wave amplitudes.

degrees of freedom are not being monitored as part of the measurement process and
so information is being lost.

5.2 Bosonic Scattering Description of a Two-Port Amplifier

To highlight the differences between the op-amp and scattering modes of amplifier
operation (and the quantum limit in each case), we will now consider a generic device
that can be used in both modes. We will see explicitly that if we construct this device
to be ideal as scattering amplifier, then it cannot be used as a quantum limited op-
amp style amplifier. The basic reason is simple. Being ideal in the scattering mode
means having an amplifier which is ideally suited for use with a signal source which
is impedance matched to the amplifier input. In contrast, being ideal in the op-amp
mode requires a signal impedance which is much smaller than the source impedance.

5.2.1 Scattering versus op-amp representations

In the bosonic scattering approach, a generic linear amplifier is modelled as a set
of coupled bosonic modes. To make matters concrete, we will consider the specific
case of a voltage amplifier with distinct input and output ports, where each port is
a semi-infinite transmission line (see Fig. 5.1). We start by recalling that a quantum
transmission line can be described as a set of non-interacting bosonic modes (see
Appendix D of (Clerk et al., 2010) for a quick review). Denoting the input transmission
line with an a and the output transmission line with a b, the current and voltage
operators in these lines may be written:

V̂q(t) =

∫ ∞
0

dω

2π

(
V̂q[ω]e−iωt + h.c.

)
, (5.11a)

Îq(t) = σq

∫ ∞
0

dω

2π

(
Îq[ω]e−iωt + h.c.

)
, (5.11b)

with
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V̂q[ω] =

√
~ω
2
Zq (q̂in[ω] + q̂out[ω]) , (5.12a)

Îq[ω] =

√
~ω
2Zq

(q̂in[ω]− q̂out[ω]) . (5.12b)

Here, q can be equal to a or b, and we have σa = 1, σb = −1. The operators
âin[ω], âout[ω] are bosonic annihilation operators; âin[ω] describes an incoming wave in
the input transmission line (i.e. incident on the amplifier) having frequency ω, while

âout[ω] describes an outgoing wave with frequency ω. The operators b̂in[ω] and b̂out[ω]
describe analogous waves in the output transmission line. We can think of V̂a as the
input voltage to our amplifier, and V̂b as the output voltage. Similarly, Îa is the cur-
rent drawn by the amplifier at the input, and Îb the current drawn at the output of
the amplifier. Finally, Za (Zb) is the characteristic impedance of the input (output)
transmission line.

As we have seen, amplification invariably requires additional degrees of freedom.
Thus, to amplify a signal at a particular frequency ω, there will be 2N bosonic modes
involved, where the integer N is necessarily larger than 2. Four of these modes are
simply the frequency-ω modes in the input and output lines (i.e. âin[ω],âout[ω],b̂in[ω]

and b̂out[ω]). The remaining 2(N − 2) modes describe auxiliary degrees of freedom
involved in the amplification process; these additional modes could correspond to
frequencies different from the signal frequency ω. The auxiliary modes can also be
divided into incoming and outgoing modes. It is thus convenient to represent them as
additional transmission lines attached to the amplifier; these additional lines could be
semi-infinite, or could be terminated by active elements.

Scattering representation. In general, our generic two-port bosonic amplifier will be
described by a N × N scattering matrix which determines the relation between the
outgoing mode operators and incoming mode operators. The form of this matrix is con-
strained by the requirement that the output modes obey the usual canonical bosonic
commutation relations. It is convenient to express the scattering matrix in a form
which only involves the input and output lines explicitly:(

âout[ω]

b̂out[ω]

)
=

(
s11[ω] s12[ω]
s21[ω] s22[ω]

)(
âin[ω]

b̂in[ω]

)
+

(
F̂a[ω]

F̂b[ω]

)
. (5.13)

Here F̂a[ω] and F̂b[ω] are each an unspecified linear combination of the incoming
auxiliary modes introduced above. They thus describe noise in the outgoing modes
of the input and output transmission lines which arises from the auxiliary modes
involved in the amplification process. Similar to Eq. (5.5) in our discussion of a one
port amplifier, the F̂ operators also ensure that canonical commutation relations are
preserved.

In the quantum optics literature, one typically views Eq. (5.13) as the defining
equation of the amplifier; we will call this the scattering representation of our amplifier.
The representation is best suited to understanding the amplifier when used in the
scattering mode of operation. In this mode, the experimentalist ensures that 〈âin[ω]〉
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is precisely equal to the signal to be amplified, irrespective of what is coming out of
the amplifier. Similarly, the output signal from the amplifier is the amplitude of the
outgoing wave in the output line, 〈b̂out[ω]〉. If we focus on b̂out, we have precisely the
same situation as described in Sec. 5.8, where we presented the Haus-Caves derivation
of the quantum limit (cf. Eq. (5.5)). It thus follows that in the scattering mode of
operation, the matrix element s21[ω] represents the gain of our amplifier at frequency
ω, |s21[ω]|2 the corresponding “photon number gain”, and F̂b the added noise operator
of the amplifier. The operator F̂a represents the back-action noise in the scattering
mode of operation; this back-action has no effect on the added noise of the amplifier
in the scattering mode.

Op-amp representation. In the op-amp amplifier mode of operation, the input and
output signals are not simply incoming/outgoing wave amplitudes; thus, the scatter-
ing representation is not an optimal description of our amplifier. The system we are
describing here is a voltage amplifier: thus, in the op-amp mode, the experimentalist
would ensure that the voltage at the end of the input line (V̂a) is equal to the signal
to be amplified, and would read out the voltage at the end of the output transmission
line (V̂b) as the output of the amplifier. From Eq. (5.11a), we see that this implies that
the amplitude of the wave going into the amplifier, ain, will depend on the amplitude
of the wave exiting the amplifier, aout.

Thus, if we want to use our amplifier as a voltage amplifier, we would like to find
a description which is more tailored to our needs than the scattering representation of
Eq. (5.13). This can be found by simply re-expressing the scattering matrix relation
of Eq. (5.13) in terms of voltages and currents. The result will be what we term the
“op amp” representation of our amplifier, a representation which is standard in the
discussion of classical amplifiers (see, e.g., (Boylestad and Nashelsky, 2006)). In this
representation, one views V̂a and Îb as inputs to the amplifier: V̂a is set by whatever we
connect to the amplifier input, while Îb is set by whatever we connect to the amplifier
output. In contrast, the outputs of our amplifier are the voltage in the output line, V̂b,
and the current drawn by the amplifier at the input, Îa.

Using Eqs. (5.11a) and (5.11b), and suppressing frequency labels for clarity, Eq. (5.13)
may be written explicitly in terms of the voltages and current in the input (V̂a, Îa)
and output (V̂b, Îb) transmission lines:(

V̂b
Îa

)
=

(
λV −Zout
1
Zin

λ′I

)(
V̂a
Îb

)
+

(
λV · ˆ̃V

ˆ̃I

)
. (5.14)

The coefficients in the above matrix are completely determined by the scattering ma-
trix of Eq. (5.13) (see Eqs. (5.17) below); moreover, they are familiar from the dis-
cussion of a voltage amplifier in Sec. 4.7. λV [ω] is the voltage gain of the amplifier,
λ′I [ω] is the reverse current gain of the amplifier, Zout is the output impedance, and
Zin is the input impedance. The last term on the RHS of Eq. (5.14) describes the two

familiar kinds of amplifier noise. ˆ̃V is the usual voltage noise of the amplifier (referred

back to the amplifier input), while ˆ̃I is the usual current noise of the amplifier. Recall
that in this standard description of a voltage amplifier (cf. Sec. 4.7), Ĩ represents the
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back-action of the amplifier: the system producing the input signal responds to these
current fluctuations, resulting in an additional fluctuation in the input signal going
into the amplifier. Similarly, λV · Ṽ represents the intrinsic output noise of the ampli-
fier: this contribution to the total output noise does not depend on properties of the
input signal. Note that we are using a sign convention where a positive 〈Îa〉 indicates a
current flowing into the amplifier at its input, while a positive 〈Îb〉 indicates a current
flowing out of the amplifier at its output. Also note that the operators V̂a and Îb on
the RHS of Eq. (5.14) will have noise; this noise is entirely due to the systems attached
to the input and output of the amplifier, and as such, should not be included in what
we call the added noise of the amplifier.

Additional important properties of our amplifier follow immediately from quantities
in the op-amp representation. As discussed in Sec. 4.3, the most important measure of
gain in our amplifier is the dimensionless power gain. This is the ratio between power
dissipated at the output to that dissipated at the input, taking the output current IB
to be VB/Zout:

GP ≡
(λV )2

4

Zin

Zout
·
(

1 +
λV λ

′
I

2

Zin

Zout

)−1

(5.15)

Another important quantity is the loaded input impedance: what is the input
impedance of the amplifier in the presence of a load attached to the output? In the
presence of reverse current gain λ′I 6= 0, the input impedance will depend on the output
load. Taking the load impedance to be Zload, some simple algebra yields:

1

Zin,loaded
=

1

Zin
+

λ′IλV
Zload + Zout

(5.16)

It is of course undesirable to have an input impedance which depends on the load.
Thus, we see yet again that it is undesirable to have appreciable reverse gain in our
amplifier.

Converting between representations. Some straightforward algebra now lets us ex-
press the op-amp parameters appearing in Eq. (5.14) in terms of the scattering matrix
appearing in Eq. (5.13):

λV = 2

√
Zb
Za

s21

D
, (5.17a)

λ′I = 2

√
Zb
Za

s12

D
, (5.17b)

Zout = Zb
(1 + s11)(1 + s22)− s12s21

D
, (5.17c)

1

Zin
=

1

Za

(1− s11)(1− s22)− s12s21

D
. (5.17d)

All quantities are evaluated at the same frequency ω, and D is defined as

D = (1 + s11)(1− s22) + s12s21. (5.18)
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Further, the voltage and current noises in the op-amp representation are simple linear
combinations of the noises F̂a and F̂b appearing in the scattering representation:(

ˆ̃V

Za · ˆ̃I

)
=
√

2~ωZa
(
− 1

2
1+s11
2s21

s22−1
D − s12D

)(
F̂a
F̂b

)
. (5.19)

Again, all quantities above are evaluated at frequency ω.
Eq. (5.19) immediately leads to an important conclusion and caveat: what one calls

the “back-action” and “added noise” in the scattering representation (i.e. Fa and Fb )
are not the same as the “back-action” and “added noise” defined in the usual op-amp

representation. For example, the op-amp back-action ˆ̃I does not in general coincide
with the F̂a, the back-action in the scattering picture. If we are indeed interested
in using our amplifier as a voltage amplifier, we are interested in the total added
noise of our amplifier as defined in the op-amp representation. As we saw in Sec. 4.7

(cf. Eq. (4.34)), this quantity involves both the noises ˆ̃I and ˆ̃V .

5.2.2 A seemingly ideal two-port amplifier

Scattering versus op-amp quantum limit. In this subsection we demonstrate that
an amplifier which is “ideal” and minimally complex when used in the scattering
operation mode fails, when used as a voltage op-amp, to have a quantum limited
noise temperature. The system we look at is very similar to the amplifier considered
by (Grassia, 1998), though our conclusions are somewhat different than those found
there.

In the scattering representation, one might guess that an “ideal” amplifier would
be one where there are no reflections of signals at the input and output, and no way
for incident signals at the output port to reach the input. In this case, Eq. (5.13) takes
the form (

âout

b̂out

)
=

(
0 0√
G 0

)(
âin

b̂in

)
+

(
F̂a
F̂b

)
, (5.20)

where we have defined
√
G ≡ s21. All quantities above should be evaluated at the same

frequency ω; for clarity, we will omit writing the explicit ω dependence of quantities
throughout this section.

Turning to the op-amp representation, the above equation implies that our ampli-
fier has no reverse gain, and that the input and output impedances are simply given
by the impedances of the input and output transmission lines. From Eqs. (5.17), we
have:

λV = 2

√
Zb
Za
G, (5.21a)

λ′I = 0, (5.21b)

Zout = Zb, (5.21c)

1

Zin
=

1

Za
. (5.21d)
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We immediately see that our amplifier looks less ideal as an op-amp. The input and
output impedances are the same as those of the input and output transmission line.
However, for an ideal op-amp, we would have liked Zin →∞ and Zout → 0.

Also of interest are the expressions for the amplifier noises in the op-amp repre-
sentation: (

ˆ̃V

Za · ˆ̃I

)
= −

√
2~ωZa

( 1
2 −

1
2
√
G

1 0

)(
F̂a
F̂b

)
. (5.22)

As s12 = 0, the back-action noise is the same in both the op-amp and scattering
representations: it is determined completely by the noise operator F̂a. However, the
voltage noise (i.e. the intrinsic output noise) involves both F̂a and F̂b. We thus have

the unavoidable consequence that there will be correlations in ˆ̃I and ˆ̃V .
To make further progress, we note again that commutators of the noise operators

F̂a and F̂b are completely determined by Eq. (5.20) and the requirement that the
output operators obey canonical commutation relations. We thus have:[

F̂a, F̂†a
]

= 1, (5.23a)[
F̂b, F̂†b

]
= 1− |G| , (5.23b)[

F̂a, F̂b
]

=
[
F̂a, F̂†b

]
= 0. (5.23c)

We will be interested in the limit of a large power gain, which requires |G| � 1. A
minimal solution to the above equations would be to have the noise operators deter-
mined by two independent (i.e. mutually commuting) auxiliary input mode operators

uin and v†in:

F̂a = ûin, (5.24)

F̂b =
√
|G| − 1v̂†in. (5.25)

Further, to minimize the noise of the amplifier, we take the operating state of the
amplifier to be the vacuum for both these modes. With these choices, our amplifier
is in exactly the minimal form described by (Grassia, 1998): an input and output
line coupled to a negative resistance box and an auxiliary “cold load” via a four-port
circulator (see Fig. 5.2). The negative resistance box is nothing but the single-mode
bosonic amplifier discussed in Sec. 5.1; an explicit realization of this element would
be a non-degenerate parametric amplifier (see, e.g., Sec. V.C in (Clerk et al., 2010)).
The “cold load” is a semi-infinite transmission line which models dissipation due to a
resistor at zero-temperature.

Note that within the scattering picture, one would conclude that our amplifier is
ideal: in the large gain limit, the noise added by the amplifier to b̂out corresponds to
a single quantum at the input:〈{

F̂b , F̂
†
b

}〉
|G|

=
|G| − 1

|G|

〈{
v̂†in, v̂in

}〉
→ 1 (5.26)
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aout

ain

bin

bout
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1-port
amp.

cold
load

input line output line

cin cout=G1/2cin+(G-1)1/2v†in

uin uout

vin

vacuum noise

vacuum noisevout

Fig. 5.2 Schematic of a “minimal” two-port amplifier which reaches the quantum limit in the

scattering mode of operation, but misses the quantum limit when used as a weakly-coupled

op-amp. See text for further description

This however is not the quantity which interests us: as we want to use this system as a
voltage op-amp, we would like to know if the noise temperature defined in the op-amp
picture is as small as possible. We are also usually interested in the case of a signal
which is weakly coupled to our amplifier; here, weak-coupling means that the input
impedance of the amplifier is much larger than the impedance of the signal source (i.e.
Zin � Zs). In this limit, the amplifier only slightly increases the total damping of the
signal source.

To address whether we can reach the op-amp quantum limit in the weak-coupling
regime, we can make use of the results of the general theory presented in Sec. 4.7.
In particular, we need to check whether the quantum noise constraint of Eq. (4.39)
is optimized, as this is a prerequisite for reaching the (weak-coupling) quantum limit.
Thus, we need to calculate the symmetrized spectral densities of the current and
voltage noises, and their cross-correlation. It is easy to confirm from the definitions of
Eq. (5.11a) and (5.11b) that these quantities take the form:

S̄V V [ω] =

〈{
ˆ̃V [ω], ˆ̃V †[ω′]

}〉
4πδ(ω − ω′)

, (5.27a)

S̄II [ω] =

〈{
ˆ̃I[ω], ˆ̃I†[ω′]

}〉
4πδ(ω − ω′)

, (5.27b)

S̄V I [ω] =

〈{
ˆ̃V [ω], ˆ̃I†[ω′]

}〉
4πδ(ω − ω′)

. (5.27c)

The expectation values here are over the operating state of the amplifier; we have
chosen this state to be the vacuum for the auxiliary mode operators ûin and v̂in to
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minimize the noise.
Taking |s21| � 1, and using Eqs. (5.24) and (5.25), we have:

S̄V V [ω] =
~ωZa

4
(σuu + σvv) =

~ωZa
2

, (5.28a)

S̄II [ω] =
~ω
Za
σuu =

~ω
Za
, (5.28b)

S̄V I [ω] =
~ω
2
σuu =

~ω
2
, (5.28c)

where we have defined

σab ≡
〈
âb̂† + b̂†â

〉
, (5.29)

and have used the fact that there cannot be any correlations between the operators u
and v in the vacuum state (i.e. 〈ûv̂†〉 = 0).

It follows immediately from the above equations that our minimal amplifier does
not optimize the quantum noise constraint of Eq. (4.39):

S̄V V [ω]S̄II [ω]−
[
Im S̄V I

]2
= 2×

(
~ω
2

)2

. (5.30)

The noise product S̄V V S̄II is precisely twice the quantum-limited value. As a result,
the general theory of Sec. 4.7 tells us if one couples an input signal weakly to this
amplifier (i.e. Zs � Zin), it is impossible to reach the quantum limit on the added noise.
Thus, while our amplifier is ideal in the scattering mode of operation (cf. Eq. (5.26)),
it fails to reach the quantum limit when used in the weak-coupling, op-amp mode of
operation. Our amplifier’s failure to have “ideal” quantum noise also means that if we
tried to use it to do QND qubit detection, the resulting back-action dephasing would
be twice as large as the minimum required by quantum mechanics.

5.2.3 Why is the op-amp quantum limit is not achieved?

Note that if one substitutes the expressions in Eqs. (5.28) (including the real cross-
correlation noise) in the classical lower bound for TN given in Eq. (4.40), one finds the
disturbing conclusion that TN [ω] not only reaches the quantum limit, but surpasses it:
one finds TN [ω] = (

√
2− 1) (~ω/2). Before one gets too excited (or alarmed) by this,

note that this expression was derived for a noise-matched source impedance (Zs = ZN),
as well as assuming Zs � Zin. The noise impedance here however is given by

ZN =

√
S̄V V
S̄II

=
Zin√

2
(5.31)

Thus, the weak coupling condition of Zs � Zin is not fulfilled, and the Eq. (4.40) for
TN is not valid.
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One can instead directly calculate the total added noise of the amplifier (as always,
referred back to the input), for a finite ratio of Zs/Zin. This added noise takes the form:

ˆ̃Vtot = −
(

ZsZa
Zs + Za

)
ˆ̃I + ˆ̃V (5.32)

Note that this classical-looking equation can be rigorously justified within the full
quantum theory if one starts with a full description of the amplifier and the signal
source (e.g. a parallel LC oscillator attached in parallel to the amplifier input). Plug-

ging in the expressions for ˆ̃I and ˆ̃V , we find:

ˆ̃Vtot =

√
~ω
2

[(
ZsZa
Zs + Za

)(
2√
Za
ûin

)
−
√
Za(ûin − v̂†in)

]

=

√
~ωZa

2

[(
Zs − Za
Zs + Za

)
ûin − v̂†in

]
(5.33)

Thus, if one impedance matches the source (i.e. tunes Zs to Za = Zin), the mode
ûin does not contribute to the total added noise, and one reaches the appropriately-
defined quantum limit on the added noise2. One is of course very far from the weak
coupling condition needed for the op-amp mode, and is thus effectively operating in
the scattering mode.

Returning to the more interesting case of a weak amplifier-signal coupling, for
Zs � Za ∼ Zin, one finds that the noise temperature is a large factor Zin/Zs bigger
than the quantum limited value. It is possible to understand the failure to reach the
quantum limit in this weak-coupling limit heuristically. To that end, note again that
the amplifier noise cross-correlation S̄IV does not vanish in the large-gain limit (cf. Eq.
(5.28c)). Correlations between the two amplifier noises represent a kind of information,
as by making use of them, we can improve the performance of the amplifier. It is easy
to take advantage of out-of-phase correlations between Ĩ and Ṽ (i.e. Im S̄V I) by simply
tuning the phase of the source impedance (cf. Eq. (4.38)). However, one cannot take
advantage of in-phase noise correlations (i.e. Re S̄V I) as easily. To take advantage of
the information here, one needs to modify the amplifier itself. By feeding back some
of the output voltage to the input, one could effectively cancel out some of the back-
action current noise Ĩ and thus reduce the overall magnitude of S̄II . Hence, the unused
information in the cross-correlator Re S̄V I represents a kind of wasted information:
had we made use of these correlations via a feedback loop, we could have reduced
the noise temperature and increased the information provided by our amplifier. (Clerk
et al., 2010) discusses this point further, and shows how feedback may be implemented
in the above amplifier by introducing reflections in the transmission lines leading to
the circulator.

2One must be careful here in defining the added noise, as when Zs is not much smaller than Zin,
the amplifier will appreciably increase the dissipation of the signal source and reduce its intrinsic
thermal fluctuations. This reduction should not be included in the definition of the added noise. This
is analogous to linear position detection in the case where the backaction damping is large; the cooling
effect of the backaction damping is not included in the definition of the quantum limit, see. Eq. (4.12)
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