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* Use quantum noise to understand quantum measurement...
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Quantum Measurement &

Mesoscopic Physics
* Quantum measurement relevant to many recent expts...

Quantum electro-

ﬁ d -, 2; mechanical systems...

(K. Schwab)

Qubit + readout
experiments...

Quantum-limited &
back-action evading
amplifiers...

(M. Devoret, I. Siddiqi) (K. Lehnert)



Quantum Measurement &

Mesoscopic Physics
* Quantum measurement relevant to many recent expts...

e Issues?
1. How do we describe the “back-action” of a detector?

« Detector is quantum and out-of-equilibrium
2. What is the “quantum limit”?
« How do we reach this ideal limit?

3. Conditional evolution?
 What is the state of the measured system given a

particular measurement record?



Weak Continuous Measurements

* Information only acquired gradually in time...
* Need to average to reduce the effects of noise
 e.g. oscillator measured by a single-electron transistor:

n e’s on
island

(K. Schwab group, Cornell)

I(t) = Ax(t) 4 &(¢)
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Weak Continuous Measurements

* Not measuring instantaneous x(t);
rather “quadrature amplitudes™:

x(t) = X (t)coswpst + Y (t) sinwyt

) ne’s on
I/\M island
z(t)

(K. Schwab group, Cornell)

I(t) = Ax(t) 4 &(¢)
\

_dlI dU
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Quantum Limits?

* Naive: for a more precise measurement, just increase
coupling, hence A....  I(t) = \z(t) + £(¢)
« BUT: back-action puts a limit to how much you can do this!
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Quantum Limits?

* Naive: for a more precise measurement, just increase

coupling, hence A....

I(t) = Az () + &£(¢)

« BUT: back-action puts a limit to how much you can do this!
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Quantum Limits?

* Naive: for a more precise measurement, just increase
coupling, hence A.... I(t) = Xax(t)) + £(¢)
« BUT: back-action puts a limit to how much you can do this!
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How do we describe back-action? Is it “ideal” or not?



Quantum Noise Approach

* What does back-action do to the oscillator?
* |s it as small as allowed by quantum mechanics?

* Need to understand the (quantum) noise
properties of the detector’s back-action force..

AN

H = Hgystem + Hgetector — T - F

* Force exerted by detector described by an operator F
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Basics of Classical Noise

« Start by thinking of the noisy force F(t) classically...
oF(®

* Power spectral density: how big is the noise at a given

YT Spw) = (sF@IP)
= [ (6F@®)-6F(0) ™!

— OO

» Stationary noise? Autocorrelation only depends on time difference
« Gaussian noise? Full probability distribution set by Sq(w)



What about a noisy quantum force?

® ne’son ~ o~
AN island Hint = Ax - n

(z(t)) b= —An

» Back-action force is a quantum operator; also described
by a spectral density...

Sp(w) = [ dte™ (E(t)F(0))
e i

Heisenberg-picture operators

Expectation value is with respect
to the density matrix describing the
detector’s state...



What is so quantum about quantum noise?
Sp(w) = [ dte™(F(t)F(0))

1. Zero-point fluctuations

 Noise does not vanish at zero temperature
« At high frequencies, o > kg T; noise will be much

bigger than the classical prediction
2. Positive and negative frequencies not the same!
« Classical: 8F(-w) = 6F(w)’, thus Sr(w) = S¢(-w)
* Quantum: F(t) and F(0) do not commute!
3. Heisenberg-like quantum constraints on noise!

 The uncertainty principle places a rigorous lower
bound on S,



Effects of the back-action force?

* Classical case: use a Langevin .
equation: I/\/\/\/. e _ AR
(x (1)) °
mi = —kx — /dt/mfy(t — Nz () 4+ 5F(t)
X
damping/k;rnel random force

Ssr(w) = 2my(w)kpgT

* Quantum case: Langevin equation still holds if the detector is
iIn equilibrium and has Gaussian noise...

h
Ssp(w) = m~y(w)hw coth <2k;uT>

* But: any reasonable detector is NOT in equilibrium!
What is the “effective temperature” of the detector?




Positive versus Negative Frequency Noise?
Sp(w) = [dte(F@)F(0))  Sp(w) # Sp(-w)

Instructive to write S(w) in terms of the exact eigenstates
of our “bath”:

Sp(w) =21 piil(fIF|i)|26(E; — E; + w)

2N

Bath density matrix Bath energy eigenstates

« Just the Golden Rule expression for a transition rate!

»>0: absorption of 7w by bath
®<0: emission of 7iw by bath



Effective Temperature

_ ot BN ®>0: absorption of 7w by bath
Splw) = /dte“" (F'()F(0))  )<0: emission of 7w by bath
Sp(w) =27y pul(fIF|i)|*6(Ef — E; + w)
S

* In equilibrium, quantum noise directly tied to temperature...

 (Consider the rate at which the detector makes transitions
between states with energy E and E+/w...

b)

h
T l P _ oo <__w>
Paa kBT

£ la)

E+7Zw

Thus: — ex

rate to emit hw 5 hw
rate to absorb hAw



Effective Temperature

_ ot BN ®>0: absorption of 7w by bath
Splw) = /dte“" (F'()F(0))  )<0: emission of 7w by bath
Sp(w) =27y pul(fIF|i)|*6(Ef — E; + w)
S

* In equilibrium, quantum noise directly tied to temperature...

 (Consider the rate at which the detector makes transitions
between states with energy E and E+/w...

b)

h
T l P _ oo <__w>
Paa kBT

£ la)

Sp(—w) hw
Thus: So(w) exp (——)

E+7Zw




Effective Temperature

_ it ) BN ®>0: absorption of 7w by bath
Splw) = /dte (F'()F(0))  )<0: emission of 7w by bath
Sp(w) =27 pil(FIF|i)[?6(Ef — E; + w)
fr

* In equilibrium, ratio between positive and negative noise
set by temperature:

Sp(—w) hw
Sp(w) P (‘k?T)

 BUT: What if bath is not in equilibrium?
« Can use this ratio to define an effective temperature....

Sp(—w) . Tw
Sp(w) exp( kBTeffw))




Effective Temperature

Gt ) BN B ®>0: absorption of 7w by bath
Splw) = /dte t<F(t)F(O)> »<0: emission of 7w by bath
Sp(— h
F(—w) = exp < W )
SF(W) kBTeff(w)

* T.#In a non-equilibrium system?
* a measure of the asymmetry between
emission and absorption
# 1S frequency-dependent?
* the price we pay for being out-of-
equilibrium!

. T

e

Still... how does this relate to more usual notions of temperature?



Effective bath descriptions
* For weak coupling, can rigorously derive a Langevin equation

A.C., Phys. Rev. B 70 (2004); ( also J. Schwinger, J. Math Phys. 2 (1960);Mozyrsky, Martin & Hastings, PRL 92 (2004))

mi = —kx — / dt'mAy(t — ta(t) + iF(t)

damping kernel random force
S — Sp(— Sp(w) + Sp(—w)
Yw) = SEDZSEED) gy = ST
S5 (w) ()ﬁcoth( he >
sFlw) = my(w) hw
QkBTeff(w>

* Generic approach:
» To understand how the detector acts as a “bath”, need
to know its Sg(w)...
* Teff?
* Energy scale characterizing the difference between
energy absorption and emission



Applications of this Approach?

KEY: If we understand the quantum noise properties of our detector, we
understand how it acts as a bath...

» Back-action cooling with Cooper Pairs:

EJ
| % n~F —
| ! 0 = Efnal - Einitial

T+ NOT set by bias voltage (Rl a)? + 462
Rather, by lifetime of a resonance! kpBleff = 166
(expt: Vpg ~ 5K, T ~ 200 mK)

Theory: AC, Girvin & Stone, 02; AC & Bennett, 05; Blencowe, Armour & Imbers, 05
Expt:  Naik et al, 2006




Applications of this Approach?

KEY: If we understand the quantum noise properties of our conductor, we
understand how it acts as a bath...

» Back-action cooling with Cooper Pairs:

? n~F —EZ

0 = Efinal - Einigia
*What if oscillator frequency is not small?
1 (hw — 6)2 + (I/2)?
n == —
0se otw/(kpTepr(w)) _ 4 hwd

N
'If6=ﬁa), Ao >> T'? Nosc ><4ﬁw) _>O

(AC, unpublished)



Applications of this Approach?

KEY: If we understand the quantum noise properties of our conductor, we
understand how it acts as a bath...

» Back-action cooling with photons:

support

o _ (o + A + (/2

Fixed
mirror

«Same expression as for
Cooper pair cooling!

«Can reach ground state for
large o, / x...

[ “‘Movable’

H,, = Adla -z

Quantum theory: Marquardt, Chen, AC, Girvin, 07; Wilson-Rae, Nooshi, Zwerger & Kippenberg 07
Expts: Hohberger-Metzger et al., 04; Arcizet et al., 06; Gigan et al. 06; Schliesser et al. 06; Corbitt et al
07; Thompson et al. 08



Towards the Quantum Limit

2
o Hose = me — %kCUQ
AVAVAY, " L
I(t) = Az(t) + &%) « How small can we make
= A {xo(t) + é’(t)} the added noise?
- t
Two parts to the noise: E(t) = So(®) FEpa(t)

/ A
“Intrinsic” output noise:

* Present even without coupling to oscillator (e.g. shot noise)
« Make it smaller by increasing coupling strength...



Towards the Quantum Limit

2
o Hose = me — %kCUQ
AVAVAY, " L
I(t) = Az(t) + &%) « How small can we make
= A {xo(t) + é’(t)} the added noise?
Two parts to the noise: ) = So(®) FEpa(t)

_—
Back-action noise:

* Measuring x must disturb p in a random way;
this leads to uncertainty in x at later times.

« Make it smaller by decreasing coupling strength...



Amplifier Quantum Limit

2
° Hose = me + %ijQ
AVAVAY," L
I(t) = Xx(t) +&(¢) « How small can we make
= A {xo(t) + é’(t)} the added noise?
Two parts to the noise: ) = 50)(\75) FEpa(t)

Quantum Limit

« If our detector has a “large” gain, then E(1) cannot be
arbitrarily small

« The smallest it can be is the size of the oscillator zero-point
motion...



A Precise Statement of the QL

If there were no noise:
SI(W> — AQS%(W>

AVAVAV
z(t) . Including noise added by detector:

Sp(w) = A% [Sz(w) + 65z (w)] + Sy (w)

(Ignore correlation for the moment!)

(I(t)) = Az (1))

Added noise S, ,44(w):
Sg.add(W) = 355¢,(w) 4 65z (w)

Quantum limit?
. . . S:I:,add(w) > SiB,ZDt(w)
21.832 21.836 21.840

i

2Qy|w|
(w2 — Q2)2 4 w242




A loophole?

If there were no noise:

AR Sr(w) = A28, (w)

z(t) . Including noise added by detector:

Sp(w) = A% [Sz(w) + 65z (w)] + Sy (w)

(Ignore correlation for the moment!)

(T(t)) = Mz(t))

Added noise S, ,qq(®): Sz add(w) = 355¢,(w) 4 68z (w)
WAIT: what if back-action force and “shot ., .  &@®)

s E(t) = =~ +¢&palt)
noise” anti-correlated? A

Could in principle have back-action, yet still
have no added noise!



Why must there be added noise?

Before Amplification: After Amplification:
P P
NG X X

* Liouville Theorem: phase-space volume can’t expand!
* Way out: there must be extra degrees of freedom

* Quantum: these extra degrees of freedom must have
some noise (at the very least, zero-point noise)

(can use this to derive amplifier quantum limt: Haus & Mullen, 62; Caves 82)



Aside: Noise-Free Amplification”?

Before Amplification: After Amplification:
P P
NI X

« Can amplify one quadrature without any added noise:

x(t) = X(t) cosQt + Y (t) sin Qt
Il
z(t) = e~ AX(t) cos Qt 4+ eAY () sin Qt

» Can realize this in many ways
e.g. driven cavity coupled to osc. (AC, Marquardt, Jacobs, 08)




Detector Noise

n e’s on

island f(t) = )\<;U(t)> + f(t)

e

(z(t))

Noise characterized by symmetrized spectral densities:

5 (w) = %/O:Odt<{5f(t),5f(0)}>em

Sp(w) = %/

— OO

o

dt <{5F’(t), 5F(o>}> elwt

5 (W) = %/_O:Odt<{5f(t),5ﬁ’(0)}>ewt



Quantum Constraint on Noise

AC, Girvin & Stone, PRB 67 (2003)
Averin, cond-mat/031524

(t) I(t) = Mx(t)) + £(¢)

Important aspect of quantum noise:

There are quantum constraints on noise that have no
classical analogue.
Tz)\(w)> 2

3, (0)3p(w) — [Re Fyp(w))? > ( (

« If we have gain, we MUST in general have noise.

« To simplify inequality, have assumed:

* No reverse gain (if you couple to |, F is not affected)
* Misreal



Origin of Quantum Noise Constraint

I(t) = Az (1) + &)
2
a;u) 5,(w)Sp(w) — [Re §1p(w)]? > <h/\(w)>

2

» Usual Heisenberg Uncertainty relation:

1 1
(AA)*(AB)? = 2 ({A, BY)? + S [{[4, B
* To have gain, I(t) and F(0) can't commute for all times t!

AB) = —20(0) (1), F(O))

* This non-commutation at different times leads directly to
our quantum constraint on the noise



Quantum Constraint on Noise

AC, Girvin & Stone, PRB 67 (2003)
Averin, cond-mat/031524

e ﬁ I(8) = Az (1)) + (1)

(z(t)

AA(w) )2
)

3 (0)8p(w) — [Re Sp(w))? > (

* A detector with “quantum ideal” noise?
* One where the product S, S reaches a minimum.

* Reaching the quantum limit on the added requires a
detector with “quantum ideal” noise....



Power Gain

* Only have a quantum limit if our detector truly amplifies
* Need dimensionless measure of power gain....

(I(t)) = AX(z(1))
(z(t)) F(t) @) (W)
."N‘I —> [ e 22%

/ P, Pout

drive _ P A2
G w) = out X
P( ) Pin YinYout

Need a large power gain!

Otherwise, we can’t ignore the added noise of the
next stage of amplification!



Power Gain

* Only expect a quantum limit if our detector truly amplifies
* Need to introduce the notion of a dimensionless power

gain.... (I(t)) = AX(z(t))
) () @) (y(@))
—p ] ] —» YV
I:)in I:)out
drive GP(CU) — Pout o >\2

Pin YinYout

* [f detector has “ideal” quantum noise:

2 . .
_ (AkBTeyry Power gain set by effective
Gp(w) = ( hiw ) temperature!

* If also Gy >> 1: S, must be real!
(correlations can’t help beat QL!)



Minimum Added Noise

F(t) .
s 1 (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
« Consider a large power gain... cross-correlator S is real

2Re [g(w)]STF

Sz(w) = - A%|g(w)|?Sk X

Effect of back-

Intrinsic output : :
action force noise

noise of detector
Three steps for reaching the quantum limit:

— 1 1
g(w) — ’rerQ—QQ—I—iw’y




Minimum Added Noise

F(t) )
5 ] (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

616 = 3L + @t - 2R IS

Effect of back-

Intrinsic output : :
action force noise

noise of detector

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling A.



Minimum Added Noise

F(t) .
s 1 (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

Sa(w) = —aks+ A2lg(uw)[25p - 2R 1r
> 2lg(w)] |V/85p /a2 - LN

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling A.



Minimum Added Noise

F(t) .
s 1 (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

S — 2Re [g(w)]S
So(w) = oy + Alg(w) P8y — 2RI

> 2|g(w)| | COS¢()\W)§IF_

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling A
2. Use a quantum-limited detector!




Minimum Added Noise

F(t) )
s 1 (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

Sr(w) = - A2|g(w)|?8F 2Re [giw)]SIF
“TR2 | 5% cos (w)Srp

> g5 +55

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling A
2. Use a quantum-limited detector!



Minimum Added Noise

F(t) .
s 1 (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

S _ 2Re [g(w)]S
52(w) = by + Alg(w)PSp - 2R NI
[R2 52, cos¢(wl
> 2[g(w)| \/4 | /\IQF (/\

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling
2. Use a quantum-limited detector!
3. Tune the cross-correlator S



Minimum Added Noise

F(t) )
5 ] (I(t)) = AX(z(1))

* Quantum noise constraint leads to the quantum limit...
* Assume the limit of a large power gain = S, / A is real

S _ 2Re w)]S
So(w) = spls+ A2g(w)[28p — 2 WL
hwytot/m .
2 (w QQ>2—|—(U2 2 - CBZDt(w)

Same as zero point noise!

Three steps for reaching the quantum limit:
1. Balance back action and intrinsic noise via tuning coupling A
2. Use a quantum-limited detector!
3. Tune the cross-correlator S



On resonance, o = Q

F(t)
{5 ) (I(1)) = AX(z(t))
h 1 1
Se(w =) > .= =2 (Az)?
mS2 Yot Yot
» The condition for an optimal coupling takes a simple form:
AZ Y RO

Yo + A(%pn  4kpgT, ff

» At the quantum limit, the amplifier-oscillator coupling
has to be weak enough to offset the large T of the
amplifier



Detecting Zero Point Motion?
I(t) = Mx(t)) + £(¢)

|

g 4
= — « Pick coupling to
- minimize added
‘ - noise on resonance
eq. + back

action noise

» Oscillator peak is 4

equilibrium t I mes n OI Se
RS background...

)
]

v

Noise Spectrum S°_ (o) [x,,

[—
]

Experiments:
T =T + T kpTn _ \/SISF
" 0}.:4requel1co_\j-'8(0/§2 - hw/ 2 TL)\/ 2
Naik, Schwab et al. 06: SET detector,15xQL (but...)

using actual output noise? 525 x QL
Flowers-Jacobs, Lehnert et al. 07: APC detector, (1700+400)*QL (measured!)



Meaning of “ideal noise™?

* Key point: need to have a detector with “ideal” quantum
noise to reach the quantum limit.

S1(w)Sp(w) — [Re Sip(w)]? > K% [Re A(w)]?

» What does this mean?
» Detector cannot be in a thermal equilibrium state;
* More concrete: “no wasted information”
e.g. generalized QPC detector

 scattering matrix must satisfy constraints related to
“‘wasted information” (pilgram & Buttiker; A.C., Stone & Girvin)

d
(3 — — 0
- (B — )

dT

ae 1

T(1-1T) C




Mesoscopic Scattering Detector

(AC, Girvin & Stone 03)

S\l

—»Q—»

LVR
/
I ) F=Q!

oy [ VIZTE? T
- VT e —\/ﬁew/
2
ML
IO — 6_ dsT(s)
h Jugr

U,

\AA4

Ur

)

T depends on oscillator:

T(e) = To(e) + L) 4

(I) = Io + AX(z(1))

Insisting on “ideal” noise puts
constraints on s-matrix:

d
@(5_—90) = 0
dT

iz _
T(1-T) (&) =

Q|-




Wasted Information?

(AC, Girvin & Stone 03)

Phase Info:

* try to learn more by doing
an interference expt.

_—-— . . .
—’— -

———EE EEE EEE BN SN I SN S O S O . ., e

Info in T(¢):

* try to learn more by using the
energy-dependence of T

TP

vVersus

ML_‘EE_
| Ur
—

do _ 1
T(1-T) () = ¢




Conclusions

* T.40f a non-equilibrium system:
- Defined by the detector’s quantum noise spectrum -

« Characterizes asymmetry between absorption and '
emission of energy

* In general, is frequency dependent
e Quantum Limit

m ]

(0

|

Noise Spectrum S

* There are quantum constraints on noise

0.0 0.4 0.8 1.2

» Reaching the quantum limit requires a detector Frequency 0/
with “ideal” noise

Clerk, Phys. Rev. B 70, 245306 (2004)
Clerk & Bennett, New. J. Phys. 7, 238 (2005)
Clerk, Girvin, Marquardt, Devoret & Schoelkopf, RMP (soon!)



