Quantum Noise and Quantum Measurement

(APS Tutorial on Quantum Measurement)

Aashish Clerk McGill University

(With thanks to S. Girvin, F. Marquardt, M. Devoret)

Use quantum noise to understand quantum measurement...

Quantum Measurement & Mesoscopic Physics

Quantum measurement relevant to many recent expts...

(K. Lehnert)

Quantum electromechanical systems...

(C. Marcus, J. Petta)

(R. Schoelkopf)

Qubit + readout experiments...

Quantum-limited & back-action evading amplifiers...

Quantum Measurement & Mesoscopic Physics

Quantum measurement relevant to many recent expts...

- Issues?
 - 1. How do we describe the "back-action" of a detector?
 - Detector is quantum and out-of-equilibrium
 - 2. What is the "quantum limit"?
 - How do we reach this ideal limit?
 - 3. Conditional evolution?
 - What is the state of the measured system given a particular measurement record?

Weak Continuous Measurements

- Information only acquired gradually in time...
- Need to average to reduce the effects of noise
- e.g. oscillator measured by a single-electron transistor:

(K. Schwab group, Cornell)

$$I(t) = \lambda x(t) + \xi(t)$$

$$\lambda = \frac{dI}{dU} \times \frac{dU}{dx}$$

Weak Continuous Measurements

• **Not** measuring instantaneous x(t); rather "quadrature amplitudes":

$$x(t) = X(t)\cos\omega_M t + Y(t)\sin\omega_M t$$

(K. Schwab group, Cornell)

$$I(t) = \lambda x(t) + \xi(t)$$

$$\lambda = \frac{dI}{dU} \times \frac{dU}{dx}$$

Quantum Limits?

- *Naïve:* for a more precise measurement, just increase coupling, hence λ $I(t) = \lambda x(t) + \xi(t)$
- BUT: back-action puts a limit to how much you can do this!

Heisenberg microscope

- •Measure $x \Rightarrow$ disturb p
- This messes up meas. of x at later times

$$\Delta x(\delta t) = \Delta x(0) + \delta t \frac{\Delta p}{m}$$

Quantum Limits?

- *Naïve:* for a more precise measurement, just increase coupling, hence λ $I(t) = \lambda x(t) + \xi(t)$
- BUT: back-action puts a limit to how much you can do this!

Heisenberg microscope

- •Measure $x \Rightarrow$ disturb p
- This messes up meas. of x at later times

SET position detector?

•*A*·*n* is a fluctuating force on oscillator... will cause x to fluc.

$$\delta I(t) = \lambda \delta x(t) + \xi(t)$$

Quantum Limits?

- *Naïve:* for a more precise measurement, just increase coupling, hence λ $\hat{I}(t) = \lambda \langle x(t) \rangle + \xi(t)$
- BUT: back-action puts a limit to how much you can do this!

Heisenberg microscope

- •Measure $x \Rightarrow$ disturb p
- This messes up meas. of x at later times

SET position detector?

•*A*·*n* is a fluctuating force on oscillator... will cause x to fluc.

How do we describe back-action? Is it "ideal" or not?

Quantum Noise Approach

- What does back-action do to the oscillator?
- Is it as small as allowed by quantum mechanics?
 - Need to understand the (quantum) noise properties of the detector's back-action force..

$$H = H_{system} + H_{detector} - \hat{x} \cdot \hat{F}$$

Force exerted by detector described by an operator F

F ~ cavity photon number

F ~ charge in QPC

F~n

Basics of Classical Noise

Start by thinking of the noisy force F(t) classically...

$$F(t) = \bar{F} + \delta F(t)$$

$$\delta F(\omega) = \frac{1}{\sqrt{T}} \int_0^T dt \left[\delta F(t)\right] e^{i\omega t}$$

Power spectral density: how big is the noise at a given frequency?

$$S_F(\omega) \equiv \langle |\delta F(\omega)|^2 \rangle$$
$$= \int_{-\infty}^{\infty} \langle \delta F(t) \cdot \delta F(0) \rangle e^{i\omega t}$$

- Stationary noise? Autocorrelation only depends on time difference
- Gaussian noise? Full probability distribution set by S_F(ω)

What about a noisy quantum force?

 Back-action force is a quantum operator; also described by a spectral density...

$$S_F(\omega) = \int dt e^{i\omega t} \langle \hat{F}(t) \hat{F}(0) \rangle$$
Heisenberg-picture operators

Expectation value is with respect to the density matrix describing the detector's state...

What is so quantum about quantum noise?

$$S_F(\omega) = \int dt e^{i\omega t} \langle \hat{F}(t)\hat{F}(0) \rangle$$

1. Zero-point fluctuations

- Noise does not vanish at zero temperature
- At high frequencies, $\hbar\omega > k_BT$; noise will be much bigger than the classical prediction

2. Positive and negative frequencies not the same!

- Classical: $\delta F(-\omega) = \delta F(\omega)^*$, thus $S_F(\omega) = S_F(-\omega)$
- Quantum: F(t) and F(0) do not commute!

3. Heisenberg-like quantum constraints on noise!

 The uncertainty principle places a rigorous lower bound on S_F

Effects of the back-action force?

 Classical case: use a Langevin equation:

Massical case: use a Langevin quation:
$$\widehat{F} = -A\widehat{n}$$

$$m\ddot{x} = -kx - \int dt' m\gamma(t-t')\dot{x}(t') + \delta F(t)$$
 damping kernel

$$S_{\delta F}(\omega) = 2m\gamma(\omega)k_BT$$

damping kernel

 Quantum case: Langevin equation still holds if the detector is in equilibrium and has Gaussian noise...

$$S_{\delta F}(\omega) = m\gamma(\omega)\hbar\omega \coth\left(\frac{\hbar\omega}{2k_BT}\right)$$

 But: any reasonable detector is NOT in equilibrium! What is the "effective temperature" of the detector?

Positive versus Negative Frequency Noise?

$$S_F(\omega) = \int dt e^{i\omega t} \langle \hat{F}(t)\hat{F}(0) \rangle \qquad S_F(\omega) \neq S_F(-\omega)$$

 Instructive to write S_F(ω) in terms of the exact eigenstates of our "bath":

$$S_F(\omega) = 2\pi \sum_{f,i} \rho_{ii} |\langle f|F|i \rangle|^2 \delta(E_f - E_i + \omega)$$
 Bath density matrix

Just the Golden Rule expression for a transition rate!

 ω >0: absorption of $\hbar\omega$ by bath

 ω <0: emission of $\hbar\omega$ by bath

$$S_F(\omega) = \int dt e^{i\omega t} \langle \widehat{F}(t) \widehat{F}(0) \rangle$$
 w>0: absorption of $\hbar \omega$ by bath $S_F(\omega) = 2\pi \sum_{f,i} \rho_{ii} |\langle f|F|i \rangle|^2 \delta(E_f - E_i + \omega)$

- In equilibrium, quantum noise directly tied to temperature...
- Consider the rate at which the detector makes transitions between states with energy E and $E+\hbar\omega...$

$$\frac{|b\rangle}{\rho_{aa}} = \exp\left(-\frac{\hbar\omega}{k_BT}\right)$$

Thus:
$$\frac{\text{rate to emit } \hbar\omega}{\text{rate to absorb } \hbar\omega} = \exp\left(-\frac{\hbar\omega}{k_BT}\right)$$

$$S_F(\omega) = \int dt e^{i\omega t} \langle \widehat{F}(t) \widehat{F}(0) \rangle$$
 w>0: absorption of $\hbar \omega$ by bath $S_F(\omega) = 2\pi \sum_{f,i} \rho_{ii} |\langle f|F|i \rangle|^2 \delta(E_f - E_i + \omega)$

- In equilibrium, quantum noise directly tied to temperature...
- Consider the rate at which the detector makes transitions between states with energy E and $E+\hbar\omega...$

$$S_F(\omega) = \int dt e^{i\omega t} \langle \widehat{F}(t) \widehat{F}(0) \rangle$$
 w>0: absorption of $\hbar \omega$ by bath $S_F(\omega) = 2\pi \sum_{f,i} \rho_{ii} |\langle f|F|i \rangle|^2 \delta(E_f - E_i + \omega)$

 In equilibrium, ratio between positive and negative noise set by temperature:

$$\frac{S_F(-\omega)}{S_F(\omega)} \equiv \exp\left(-\frac{\hbar\omega}{k_BT}\right)$$

- BUT: What if bath is not in equilibrium?
- Can use this ratio to define an effective temperature....

$$rac{S_F(-\omega)}{S_F(\omega)} \equiv \exp\left(-rac{\hbar\omega}{k_B T_{eff}(\omega)}\right)$$

$$S_F(\omega) = \int dt e^{i\omega t} \langle \hat{F}(t)\hat{F}(0) \rangle$$
 $\omega > 0$: absorption of $\hbar \omega$ by bath $\omega < 0$: emission of $\hbar \omega$ by bath

$$\left| rac{S_F(-\omega)}{S_F(\omega)} \right| \equiv \exp\left(-rac{\hbar\omega}{k_B T_{eff}(\omega)}
ight)$$

- T_{eff} in a non-equilibrium system?
 - a measure of the asymmetry between emission and absorption
- T_{eff} is frequency-dependent?
 - the price we pay for being out-ofequilibrium!

Still... how does this relate to more usual notions of temperature?

Effective bath descriptions

• For weak coupling, can *rigorously* derive a Langevin equation A.C., Phys. Rev. B 70 (2004); (also J. Schwinger, J. Math Phys. 2 (1960); Mozyrsky, Martin & Hastings, PRL 92 (2004))

$$m\ddot{x} = -\tilde{k}x - \int dt' m\gamma(t-t')\dot{x}(t') + \delta F(t)$$
damping kernel random force

$$\gamma(\omega) = \frac{S_F(\omega) - S_F(-\omega)}{2m\hbar\omega} \quad S_{\delta F}(\omega) = \frac{S_F(\omega) + S_F(-\omega)}{2}$$

$$\bar{S}_{\delta F}(\omega) = m\gamma(\omega)\hbar\omega \coth\left(\frac{\hbar\omega}{2k_BT_{eff}(\omega)}\right)$$

- Generic approach:
 - To understand how the detector acts as a "bath", need to know its $S_F(\omega)$...
- *T_{eff}*?
 - Energy scale characterizing the difference between energy absorption and emission

Applications of this Approach?

KEY: If we understand the quantum noise properties of our detector, we understand how it acts as a bath...

Back-action cooling with Cooper Pairs:

$$\delta = \mathsf{E}_{\mathsf{final}} - \mathsf{E}_{\mathsf{initial}}$$

 T_{eff} NOT set by bias voltage Rather, by lifetime of a resonance! (expt: $V_{DS} \sim 5K$, $T_{eff} \sim 200$ mK)

$$k_B T_{eff} = \frac{(\hbar \Gamma_a)^2 + 4\delta^2}{16\delta}$$

Theory: AC, Girvin & Stone, 02; AC & Bennett, 05; Blencowe, Armour & Imbers, 05 Expt: Naik et al. 2006

Applications of this Approach?

KEY: If we understand the quantum noise properties of our conductor, we understand how it acts as a bath...

Back-action cooling with Cooper Pairs:

$$\delta = \mathsf{E}_{\mathsf{final}} - \mathsf{E}_{\mathsf{initial}}$$

What if oscillator frequency is not small?

$$n_{osc} = \frac{1}{e^{\hbar\omega/(k_B T_{eff}(\omega))} - 1} = \frac{(\hbar\omega - \delta)^2 + (\Gamma/2)^2}{4\hbar\omega\delta}$$

• If
$$\delta = \hbar\omega$$
, $\hbar\omega >> \Gamma$?

• If
$$\delta = \hbar\omega$$
, $\hbar\omega >> \Gamma$? $n_{osc} \rightarrow \left(\frac{\Gamma}{4\hbar\omega}\right)^2 \rightarrow 0$

(AC. unpublished)

Applications of this Approach?

KEY: If we understand the quantum noise properties of our conductor, we understand how it acts as a bath...

Back-action cooling with photons:

$$\bar{n}_{M}^{O} = -\frac{(\omega_{M} + \Delta)^{2} + (\kappa/2)^{2}}{4\omega_{M}\Delta}$$

- Same expression as for Cooper pair cooling!
- •Can reach ground state for large ω_m / $\kappa...$

Quantum theory: Marquardt, Chen, AC, Girvin, 07; Wilson-Rae, Nooshi, Zwerger & Kippenberg 07 Expts: Hohberger-Metzger et al., 04; Arcizet et al., 06; Gigan et al. 06; Schliesser et al. 06; Corbitt et al. 07; Thompson et al. 08

Towards the Quantum Limit

$$I(t) = \lambda x(t) + \xi(t)$$
 • How small can we the added noise?

$$H_{osc} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$
$$H_{int} = A\hat{x} \cdot \hat{n}$$

How small can we make

Two parts to the noise:

$$\tilde{\xi}(t) = \frac{\xi_0(t)}{\lambda} + \xi_{BA}(t)$$

"Intrinsic" output noise:

- Present even without coupling to oscillator (e.g. shot noise)
- Make it smaller by increasing coupling strength...

Towards the Quantum Limit

$$I(t) = \lambda x(t) + \xi(t)$$
 • How small can we the added noise?

$$H_{osc} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$
$$H_{int} = A\hat{x} \cdot \hat{n}$$

How small can we make

Two parts to the noise:

$$\tilde{\xi}(t) = \frac{\xi_0(t)}{\lambda} + \xi_{BA}(t)$$

Back-action noise:

- Measuring x must disturb p in a random way; this leads to uncertainty in x at later times.
- Make it smaller by decreasing coupling strength...

Amplifier Quantum Limit

$$I(t) = \lambda x(t) + \xi(t)$$
 • How small can we the added noise?

$$H_{osc} = \frac{p^2}{2m} + \frac{1}{2}kx^2$$
$$H_{int} = A\hat{x} \cdot \hat{n}$$

How small can we make

Two parts to the noise:

$$\tilde{\xi}(t) = \frac{\xi_0(t)}{\lambda} + \xi_{BA}(t)$$

Quantum Limit

- If our detector has a "large" gain, then $\xi(t)$ cannot be arbitrarily small
- The *smallest* it can be is the size of the oscillator zero-point motion...

A Precise Statement of the QL

If there were no noise:

$$S_I(\omega) = \lambda^2 S_x(\omega)$$

Including noise added by detector:

$$S_I(\omega) = \lambda^2 \left[S_x(\omega) + \delta S_x(\omega) \right] + S_{\xi_0}(\omega)$$

(Ignore correlation for the moment!)

Added noise $S_{x,add}(\omega)$:

$$S_{x,\text{add}}(\omega) = \frac{1}{\lambda^2} S_{\xi_0}(\omega) + \delta S_x(\omega)$$

Quantum limit?

$$S_{x,\text{add}}(\omega) \geq S_{x,\text{zpt}}(\omega)$$

= $(\Delta x_{\text{zpt}})^2 \frac{2\Omega\gamma|\omega|}{(\omega^2 - \Omega^2)^2 + \omega^2\gamma^2}$

A loophole?

If there were no noise:

$$S_I(\omega) = \lambda^2 S_x(\omega)$$

Including noise added by detector:

$$S_I(\omega) = \lambda^2 \left[S_x(\omega) + \delta S_x(\omega) \right] + S_{\xi_0}(\omega)$$
 (Ignore correlation for the moment!)

Added noise
$$S_{x,add}(\omega)$$
: $S_{x,add}(\omega) = \frac{1}{\lambda^2} S_{\xi_0}(\omega) + \delta S_x(\omega)$

WAIT: what if back-action force and "shot noise" anti-correlated? $\tilde{\xi}(t) = \frac{\xi_0(t)}{\lambda} + \xi_{BA}(t)$

Could in principle have back-action, yet still have no added noise!

Why must there be added noise?

Before Amplification:

After Amplification:

- Liouville Theorem: phase-space volume can't expand!
- Way out: there must be extra degrees of freedom
- Quantum: these extra degrees of freedom must have some noise (at the very least, zero-point noise)

(can use this to derive amplifier quantum limt: Haus & Mullen, 62; Caves 82)

Aside: Noise-Free Amplification?

Before Amplification:

After Amplification:

Can amplify one quadrature without any added noise:

$$x(t) = X(t)\cos\Omega t + Y(t)\sin\Omega t$$

$$x(t) = e^{-A}X(t)\cos\Omega t + e^{A}Y(t)\sin\Omega t$$

Can realize this in many ways
 e.g. driven cavity coupled to osc. (AC, Marquardt, Jacobs, 08)

Detector Noise

Noise characterized by symmetrized spectral densities:

$$\bar{S}_{I}(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \left\langle \left\{ \delta \hat{I}(t), \delta \hat{I}(0) \right\} \right\rangle e^{i\omega t}$$

$$\bar{S}_{F}(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \left\langle \left\{ \delta \hat{F}(t), \delta \hat{F}(0) \right\} \right\rangle e^{i\omega t}$$

$$\bar{S}_{IF}(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \left\langle \left\{ \delta \hat{I}(t), \delta \hat{F}(0) \right\} \right\rangle e^{i\omega t}$$

Quantum Constraint on Noise

AC, Girvin & Stone, PRB **67** (2003) Averin, cond-mat/031524

$$\widehat{I}(t) = \lambda \langle x(t) \rangle + \xi(t)$$

Important aspect of quantum noise:

There are quantum constraints on noise that have no classical analogue.

$$ar{S}_I(\omega)ar{S}_F(\omega) - \left[\operatorname{Re}\ ar{S}_{IF}(\omega)
ight]^2 \geq \left(rac{\hbar\lambda(\omega)}{2}
ight)^2$$

- If we have gain, we MUST in general have noise.
- To simplify inequality, have assumed:
 - No reverse gain (if you couple to I, F is not affected)
 - λ is real

Origin of Quantum Noise Constraint

$$\widehat{I}(t) = \lambda \langle x(t) \rangle + \xi(t)$$

$$\bar{S}_{I}(\omega)\bar{S}_{F}(\omega) - \left[\operatorname{Re} \bar{S}_{IF}(\omega)\right]^{2} \geq \left(\frac{\hbar\lambda(\omega)}{2}\right)^{2}$$

Usual Heisenberg Uncertainty relation:

$$(\Delta A)^2 (\Delta B)^2 \ge \frac{1}{4} \langle \{A, B\} \rangle^2 + \frac{1}{4} |\langle [A, B] \rangle|^2$$

To have gain, I(t) and F(0) can't commute for all times t!

$$\lambda(t) \equiv -rac{i}{\hbar} heta(t) \left\langle [I(t), F(0)]
ight
angle$$

 This non-commutation at different times leads directly to our quantum constraint on the noise

Quantum Constraint on Noise

AC, Girvin & Stone, PRB **67** (2003) Averin, cond-mat/031524

$$\widehat{I}(t) = \lambda \langle x(t) \rangle + \xi(t)$$

$$ar{S}_I(\omega)ar{S}_F(\omega) - \left[\operatorname{Re}\ ar{S}_{IF}(\omega)
ight]^2 \geq \left(rac{\hbar\lambda(\omega)}{2}
ight)^2$$

- A detector with "quantum ideal" noise?
 - One where the product $S_I S_F$ reaches a minimum.
- Reaching the quantum limit on the added requires a detector with "quantum ideal" noise....

Power Gain

- Only have a quantum limit if our detector truly amplifies
- Need dimensionless measure of power gain....

Need a large power gain!

Otherwise, we can't ignore the added noise of the next stage of amplification!

Power Gain

- Only expect a quantum limit if our detector truly amplifies
- Need to introduce the notion of a dimensionless **power** $\widehat{I}(t) = A\lambda \langle x(t) \rangle$

$$\begin{array}{c} \langle x(t) \rangle & \hat{F}(t) \\ \hline \\ P_{\text{in}} & \hline \\ \end{array} \\ \begin{array}{c} \hat{I}(t) & \langle y(t) \rangle \\ \hline \\ P_{\text{out}} & \hline \\ \end{array} \\ \end{array}$$
 drive
$$G_P(\omega) \equiv \frac{P_{\text{out}}}{P_{\text{in}}} \propto \frac{\lambda^2}{\gamma_{\text{in}} \gamma_{\text{out}}}$$

• If detector has "ideal" quantum noise:

$$G_P(\omega) = \left(\frac{4k_B T_{eff}}{\hbar \omega}\right)^2$$

• If also G_P >> 1:

Power gain set by effective temperature!

S_{IF} must be real!

(correlations can't help beat QL!)

Minimum Added Noise

- Quantum noise constraint leads to the quantum limit...
- Consider a large power gain... cross-correlator S_{IF} is real

Three steps for reaching the quantum limit:

$$g(\omega) = \frac{1}{m} \frac{1}{\omega^2 - \Omega^2 + i\omega\gamma}$$

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain ⇒ S_{IF} / λ is real

Three steps for reaching the quantum limit:

Balance back action and intrinsic noise via tuning coupling A.

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain $\Rightarrow S_{IF} / \lambda$ is real

$$S_{x}(\omega) = \frac{\bar{S}_{I}}{A^{2}\lambda^{2}} + A^{2}|g(\omega)|^{2}\bar{S}_{F} - \frac{2\operatorname{Re}\left[g(\omega)\right]\bar{S}_{IF}}{\lambda}$$

$$\geq 2|g(\omega)|\left[\sqrt{\bar{S}_{I}\bar{S}_{F}/\lambda^{2}} - \frac{\cos\phi(\omega)\bar{S}_{IF}}{\lambda}\right]$$

Three steps for reaching the quantum limit:

1. Balance back action and intrinsic noise via tuning coupling A.

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain $\Rightarrow S_{IF} / \lambda$ is real

$$S_{x}(\omega) = \frac{\bar{S}_{I}}{A^{2}\lambda^{2}} + A^{2}|g(\omega)|^{2}\bar{S}_{F} - \frac{2\operatorname{Re}\left[g(\omega)\right]\bar{S}_{IF}}{\lambda}$$

$$\geq 2|g(\omega)|\left[\sqrt{\bar{S}_{I}\bar{S}_{F}/\lambda^{2}} + \frac{\cos\phi(\omega)\bar{S}_{IF}}{\lambda}\right]$$

- 1. Balance back action and intrinsic noise via tuning coupling A
 - Use a quantum-limited detector!

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain ⇒ S_{IF} / λ is real

$$S_{x}(\omega) = \frac{\bar{S}_{I}}{A^{2}\lambda^{2}} + A^{2}|g(\omega)|^{2}\bar{S}_{F} - \frac{2\operatorname{Re}\left[g(\omega)\right]\bar{S}_{IF}}{\lambda}$$

$$\geq 2|g(\omega)|\left[\sqrt{\frac{\hbar^{2}}{4} + \frac{\bar{S}_{IF}^{2}}{\lambda^{2}}} - \frac{\cos\phi(\omega)\bar{S}_{IF}}{\lambda}\right]$$

- 1. Balance back action and intrinsic noise via tuning coupling A
 - 2. Use a quantum-limited detector!

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain $\Rightarrow S_{IF}$ / λ is real

$$S_{x}(\omega) = \frac{\bar{S}_{I}}{A^{2}\lambda^{2}} + A^{2}|g(\omega)|^{2}\bar{S}_{F} - \frac{2\operatorname{Re}\left[g(\omega)\right]\bar{S}_{IF}}{\lambda}$$

$$\geq 2|g(\omega)|\left[\sqrt{\frac{\hbar^{2}}{4} + \frac{\bar{S}_{IF}^{2}}{\lambda^{2}}} - \frac{\cos\phi(\omega)\bar{S}_{IF}}{\lambda}\right]$$

- 1. Balance back action and intrinsic noise via tuning coupling
 - 2. Use a quantum-limited detector!
 - 3. Tune the cross-correlator S_{IF}

- Quantum noise constraint leads to the quantum limit...
- Assume the limit of a large power gain ⇒ S_{IF} / λ is real

$$S_{x}(\omega) = \frac{\bar{S}_{I}}{\lambda^{2}A^{2}} + A^{2}|g(\omega)|^{2}\bar{S}_{F} - \frac{2\operatorname{Re}\left[g(\omega)\right]\bar{S}_{IF}}{\lambda}$$

$$\geq \frac{\hbar\omega\gamma_{tot}/m}{(\omega^{2} - \Omega^{2})^{2} + \omega^{2}\gamma_{tot}^{2}} = S_{x,\operatorname{zpt}}(\omega)$$

Same as zero point noise!

- 1. Balance back action and intrinsic noise via tuning coupling A
 - 2. Use a quantum-limited detector!
 - 3. Tune the cross-correlator S_{IF}

On resonance, $\omega = \Omega$

$$S_x(\omega = \Omega) \geq \frac{\hbar}{m\Omega} \cdot \frac{1}{\gamma_{tot}} = 2(\Delta x)^2 \frac{1}{\gamma_{tot}}$$

The condition for an optimal coupling takes a simple form:

$$\frac{A_{opt}^2 \gamma}{\gamma_0 + A_{opt}^2 \gamma} = \frac{\hbar \Omega}{4k_B T_{eff}}$$

 At the quantum limit, the amplifier-oscillator coupling has to be weak enough to offset the large T_{eff} of the amplifier

Detecting Zero Point Motion?

$$\widehat{I}(t) = \lambda \langle x(t) \rangle + \xi(t)$$

- Pick coupling to minimize added noise on resonance
- Oscillator peak is 4 times noise background...

Experiments:

$$\frac{k_B T_N}{\hbar \omega / 2} \equiv \frac{\sqrt{S_I S_F}}{\hbar \lambda / 2}$$

Naik, Schwab et al. 06:

SET detector,15×QL (but...) using actual output noise? 525 × QL

Flowers-Jacobs, Lehnert et al. 07:

APC detector, (1700±400)*QL (measured!)

Meaning of "ideal noise"?

 Key point: need to have a detector with "ideal" quantum noise to reach the quantum limit.

$$S_I(\omega)S_F(\omega) - [\text{Re } S_{IF}(\omega)]^2 \ge \hbar^2 [\text{Re } \lambda(\omega)]^2$$

- What does this mean?
 - Detector cannot be in a thermal equilibrium state;
 - More concrete: "no wasted information" e.g. generalized QPC detector
 - scattering matrix must satisfy constraints related to "wasted information" (Pilgram & Buttiker; A.C., Stone & Girvin)

$$\frac{\frac{d}{d\varepsilon}(\beta - \varphi)}{\frac{\frac{dT}{d\varepsilon}}{T(1 - T)}} = 0$$

Mesoscopic Scattering Detector

(AC, Girvin & Stone 03)

$$s(\varepsilon) = \begin{pmatrix} \sqrt{1 - T}e^{i\beta} & \sqrt{T}e^{i\varphi'} \\ \sqrt{T}e^{i\varphi} & -\sqrt{1 - T}e^{i\beta'} \end{pmatrix}$$

$$I_0 = \frac{e^2}{h} \int_{\mu_R}^{\mu_L} d\varepsilon T(\varepsilon)$$

T depends on oscillator:

$$T(\varepsilon) = T_0(\varepsilon) + \frac{dT(\varepsilon)}{dx} \cdot x$$

$$\langle I \rangle = I_0 + A\lambda \langle x(t) \rangle$$

Insisting on "ideal" noise puts constraints on s-matrix:

$$\frac{\frac{d}{dx}(\beta - \varphi)}{\left[\frac{\frac{dT}{dx}}{T(1 - T)}\right]}(\varepsilon) = 0$$

Wasted Information?

(AC, Girvin & Stone 03)

Phase Info:

 try to learn more by doing an interference expt.

$$\frac{d}{dx}(\beta - \varphi) = 0$$

Info in $T(\varepsilon)$:

 try to learn more by using the energy-dependence of T

versus

$$\left[\frac{\frac{dT}{dx}}{T(1-T)}\right](\varepsilon) = \frac{1}{C}$$

Conclusions

- T_{eff} of a non-equilibrium system:
 - Defined by the detector's quantum noise spectrum
 - Characterizes asymmetry between absorption and emission of energy
 - In general, is frequency dependent
- Quantum Limit
 - There are quantum constraints on noise
 - Reaching the quantum limit requires a detector with "ideal" noise

Clerk, Phys. Rev. B **70**, 245306 (2004) Clerk & Bennett, New. J. Phys. **7**, 238 (2005) Clerk, Girvin, Marquardt, Devoret & Schoelkopf, RMP (soon!)