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We study the conductance of a quantum “T junction” coupled to two electron reservoirs and a quan-
tum dot. In the absence of electron-electron interactions, the conductance g is sensitive to interference
between trajectories which enter the dot and those which bypass it. We show that including an intradot
charging interaction has a marked influence: it can enforce a coherent response from the dot at tem-
peratures much larger than the single-particle level spacing D. The result is large oscillations of g as a
function of the voltage applied to a gate that is capacitively coupled to the dot. Without interactions, the
conductance has only a weak interference signature when T . D.
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How do interactions affect the phase coherence of elec-
trons traveling through a quantum dot? This question is of
interest both because of the fundamental issues it raises and
because of its relevance to recent experiments. Ground-
breaking experiments in which a Coulomb blockaded
quantum dot is embedded in an Aharonov-Bohm ring [1]
have demonstrated that transport through such dots is at
least partially coherent, despite strong interactions. Com-
plementary studies which observed Fano resonances in the
conductance of such dots also substantiate this conclusion
[2], while the observation of weak localization and conduc-
tance fluctuations has demonstrated coherence in open (i.e.,
not Coulomb blockaded) dots [3]. In general, electron-
electron interactions are expected to degrade the coherence
of transport through a dot —interference phenomena, such
as the amplitude of Aharonov-Bohm oscillations in the
conductance are suppressed compared to the noninteract-
ing case [4]. In this Letter we study a system in which the
opposite phenomenon occurs: the presence of a charging
interaction in a quantum dot significantly enhances in-
terference phenomena compared to the situation without
interactions [5].

Motivated by the experiments mentioned above, we con-
sider a T-junction system which is sensitive to the coher-
ence of electrons reflected from a quantum dot. The T
junction consists of three coincident single-mode quan-
tum point contacts coupled to source and drain reservoirs
and to a quantum dot (Fig. 1). Without interactions, the
source-drain conductance g is sensitive to constructive or
destructive interference between trajectories which bypass
the dot, and those which enter it. If electron motion in the
dot is fully coherent, g (in units of e2�h� is [6]

g � gmax

Z
d´

µ
2

df
d´

∂
sin2�d 1 a�´�� . (1)

Here d is the transmission phase shift associated with di-
rect trajectories bypassing the dot (Fig. 1a), a�´� is the
phase shift for scattering from the dot through an effective
tunnel junction with reflection probability jrj2 (Fig. 1b)
[7], and f is the Fermi function. The parameters d, jrj,
and gmax are determined by the 3 3 3 scattering matrix
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S of the T junction without dot [8]. This matrix changes
appreciably only over energies comparable to the Fermi
energy EF , and can be treated as constant over the smaller
scales we focus on. At zero temperature, the conductance
(1) exhibits full constructive and destructive interference
as a function of the phases d and a, resulting in oscilla-
tions of g between 0 and its maximum value gmax. While
d is a property of the T junction and cannot be tuned, a

depends on the dot and can be varied, e.g., by changing
EF . The typical energy scale for variations of a is D, the
single-particle level spacing of the dot.

In this Letter, we focus on the temperature regime
T ¿ D. Here the signatures of interference in Eq. (1)
are washed out by thermal smearing, resulting in g �
1
2 gmax�1 2 jrjcos2d�. We ask how this now changes
when the effects of intradot electron-electron interactions
are included. We consider the capacitive interaction

HC � EC�ndot 2 N �2, (2)

where EC ø EF is the charging energy, ndot the electron
number on the dot, and N the dimensionless voltage of
a gate electrode capacitively coupled to the dot. Although
we consider T ¿ D, we also require T ø EC , so that
charged dot excitations are suppressed. Our main result is
that in this regime transport through the T junction is more
coherent with interactions than without —electrons scat-
ter from the dot with a well defined N -dependent phase,
resulting in interference and hence an N dependent con-
ductance. The origin of the resulting oscillations is entirely
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FIG. 1. (a) Schematic of the T-junction plus dot system, show-
ing a direct trajectory; such scattering events are described by
the phase d. The effective tunnel junction in the entrance to the
dot has a reflection probability jrj2. (b) Same as (a), showing a
scattering event which involves the dot.
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different from that of standard Coulomb blockade oscilla-
tions, as there is no “blockade” here—electrons traveling
from source to drain are not forced to pass through the
dot. We find this result remarkable, as one usually expects
that electron-electron interactions degrade, rather than en-
hance, coherence, due to the possibility of creating low-
energy particle-hole excitations in the dot.

The underlying reason for this enhanced coherence is
a subtle consequence of the charging interaction first dis-
cussed by Matveev [9]. Using the convention

N � N0 1 1�2 1 x, jxj # 1�2 , (3)

where N0 is an integer, for T ø EC only the states ndot �
N0 and ndot � N0 1 1 are dynamically significant. These
states may be regarded as being the # and " states, re-
spectively, of a fictitious impurity spin. If we also as-
sign lead (dot) electrons a fictitious " �#� spin, then the
tunneling Hamiltonian between lead and dot takes the
form of spin-flip scattering off an impurity. In this way,
the Coulomb blockade problem can be mapped onto an
anisotropic Kondo model; for spinless electrons [10] this
is a single-channel Kondo (1CK) model, while with spin
it is a two-channel Kondo (2CK) model. In this analogy,
jtj plays the role of the dimensionless exchange constant
Jr0, and x the role of a local impurity magnetic field. The
coherent reflection from the dot results from this effective
Kondo physics, as we will now discuss.

For a quantitative description, we write the Hamiltonian
of the T junction and dot as H � HD 1 HL 1 HS 1 HC ,
where HD �

P
ab,s Habdy

asdbs is the Hamiltonian of

the closed dot, HL �
P

j�1,2

P
s

R
dk ´�k�cy

js�k�cjs�k�
is the kinetic energy of electrons in leads 1 and 2, and HC

is given in Eq. (2). Scattering in the T junction is described
by

HS �
X

s,i�1,2

Z
dk

"
2X

j�1

Z
dk0 Wijc

y
is�k�cjs�k0�

1
X
a

�Wi3c
y
is�k�das 1 H.c.�

#

1
X

s,a,b

W33d
y
bsdas , (4)

where the 3 3 3 Hermitian matrix W describes a potential
corresponding to the scattering matrix S�EF�. The dot
electron number ndot in Eq. (2) reads ndot �

P
dy

asdas.
We start with the case of a weakly coupled dot �jtj2 ø

1�. Using an approach similar to that of Ref. [11], we ex-
press the source-drain conductance in terms of the single-
particle retarded Green function GR

ab�v� of the dot. As
the dot is coupled to only a single point contact, and as
GR is diagonal in spin, one can obtain an exact expression
involving only GR evaluated at the contact [6]:

g
gmax

� sin2d 1
G

4
Ime2id

X
s

Z
d´

df
de

GR
s �´� , (5)

where G �
1

2p jtj2D. In the regime of weak tunneling and
T . G, it is possible to do a lowest order calculation in jtj2
186801-2
by using GR for an uncoupled dot, which can be obtained
exactly [12]. Averaging over fluctuations of the dot wave
functions, and treating dot occupation factors in the same
way as the rate-equations approach [13], we find to lowest
order in jtj2, when D ø T ø EC ,

g

gmax
�

1
2

2 cos�2d�
∑

1
2

2
jtj2

4
ECx�T

sinh�2ECx�T�

∏

1 sin�2d�
∑
jtj2

8
Y�x�

∏
. (6)

Near resonance jxj ø 1, Y�x� is approximately

Y �x� �
2
p

tanh�ECx�T� log

∑
min

2EC

T
,

1
jxj

∏
. (7)

The first jtj2 correction to the conductance in Eq. (6) is
proportional to ImGR, and is identical to the conduc-
tance through a Coulomb blockaded dot coupled to two
leads when D ø T ø EC [13]. This term is always
small ��jtj2 ø 1�. In contrast, the second correction
term to the conductance, arising from ReGR , gives rise
to a low-temperature logarithmic divergence near reso-
nance. Its origin is a partial cancellation between elec-
tron-like processes �ndot � N0 ! N0 1 1� and holelike
processes �ndot � N0 1 1 ! N0�, which is identical to
how a logarithmic divergence arises in the conventional
Kondo problem. This is not surprising, given the analogy
already discussed. The logarithm in Eq. (7) is cut off by
x, consistent with x playing the role of a magnetic field in
the Kondo analogy.

To summarize, we see that the lowest order in jtj
conductance calculation indicates an instability which
enhances the N dependence of g at low temperatures.
As the only way an N dependence can arise in the T-
junction geometry is via interference, this breakdown sug-
gests an enhancement of coherent scattering from the dot.
In terms of the Kondo analogy, the failure of perturbation
theory results from the instability of the weak-coupling
fixed point. The effective Kondo temperature which
characterizes this instability is TK � ECe2c�jtj (with c a
constant) [9], consistent with the fact that jtj is analogous
to a dimensionless exchange coupling.

To investigate the regime T , ECx # TK , where Eq. (6)
fails and Kondo physics becomes dominant, we now
present results of a calculation for the opposite situation
of a strongly coupled quantum dot �jtj � 1�. For strong
coupling, TK ! EC , and the condition T , EC ensures
that we will be in a regime dominated by Kondo physics
for all values of N . To deal with a strongly coupled dot
at D ø T ø EC , we use the approach of Flensberg [14]
and Matveev [15–17]. In this approach the limit D ! 0
is taken, and electron dynamics near the T junction is
described using a one-dimensional model for each point
contact. The interaction is treated exactly using bosoniza-
tion, while the effects of weak backscattering �jrj ø 1�
are dealt with perturbatively [6]. In what follows, we
186801-2
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discuss the case of spinless electrons and electrons with
spin separately.

Without spin [10], our system corresponds to the single-
channel Kondo model, which is well known to have a
Fermi liquid (FL) ground state in which the magnetic im-
purity acts as a potential scatterer. We thus expect the
T , TK � EC properties of the open dot system to also
conform to a Fermi liquid state. Indeed, a rigorous calcu-
lation gives to order jrj2:

g � gmax sin2�d 1 pndot� 1 O�T�EC�2, (8)

where

ndot � N 2 �eC jrj�p� sin2pN

1 l2�eC jrj�p�2 sin4pN 1 O�jrj�3. (9)

Here C is Euler’s constant, and l2 � 1.9. Equation (8)
indicates that despite being at T ¿ D, a regime where
the noninteracting system is essentially incoherent, reflec-
tion from the interacting dot is fully coherent — as N is
tuned, g exhibits full constructive and destructive inter-
ference. The scattering phase shift a � pndot obeys the
Friedel sum rule [18], as expected for the FL ground state
of the single-channel Kondo model. Equation (8) confirms
that in the spinless case the breakdown of perturbation the-
ory in Eq. (6) indeed signals coherent scattering from the
dot. The fact that a Fermi liquid picture holds in the spin-
less case (near jrj � 0) was first noted by Aleiner and
Glazman [19].

A heuristic phase diagram describing the N depen-
dence of the conductance for a fixed temperature D ø

T , EC is given in Fig. 2a. For small jrj, T , TK for
all N , and the coherent expression of Eq. (8) holds for
all N (i.e., one is always in region I). At jrj � 0,
ndot � N , and g�N � has a sinusoidal form, while, for
larger jrj, ndot will change rapidly by 1 near resonance
[15], implying a corresponding rapid change in the phase
a by p, and hence a Fano-type line shape [20]. As we ap-
proach the weak-coupling regime �jrj ! 1�, we will have
TK , EC , meaning that this Kondo induced coherence will
occur only at sufficiently low temperatures T , TK and
close to resonance, jxj , TK�EC . We still expect a nar-
row Fano line shape in this regime, as all the interesting
phase behavior occurs near resonance. For T $ TK , tem-
perature cuts off scaling to the strong-coupling fixed point,
and consequently there will be no enhancement of coher-
ent scattering; the N dependence of g will remain weak,
being described by Eq. (6).

Even though we are at T ¿ D, including spin changes
the behavior of the stub considerably. The analogy is now
to a two-channel Kondo model (the two spin projections
act as the two conserved channels), which is markedly
different from the one-channel case. At zero magnetic field
(i.e., x � 0 in our system), the low-temperature properties
of the 2CK model are described by a non-Fermi liquid
(NFL) fixed point which corresponds to a dimensionless
exchange constant of order unity (i.e., jtj � 1). A nonzero
186801-3
FIG. 2. Heuristic phase diagrams for the conductance g of the
T junction, for a fixed T ø EC , without spin (a) and with spin
(b). jrj2 is the reflection probability from the dot entrance, and x
is the dimensionless gate voltage (x � 0 implies charge degener-
acy); cf. Eq. (3). In regions I and II, infrared Kondo fixed points
determine the physics: the solid line indicates ECx � TK�jrj�,
and the dashed line in (b) indicates ECx � Gc�jrj�; see text.
Scattering from the dot is mainly coherent in region I (implying
g depends strongly on x here), whereas it is mainly incoherent
in II and in the unlabeled region outside I. The dot-dashed line
indicates T � TK �jrj�.

magnetic field (i.e., jxj . 0) destroys the stability of this
fixed point, and the system flows towards an alternate FL
fixed point. Both these fixed points have an impact on the
conductance, as we now demonstrate.

Perturbation theory in jrj for T ø EC � TK yields the
following form for the conductance:

g �
gmax

2
�1 2 x cos�2d 1 2a�� , (10)

where, defining Gc � 2eCp22jrj2EC sin2�px�,

x�x, T � � c1

s
Gc

T
1 O

µ
Gc

T

∂3�2

, (11)

a�x, T � �
p

2

µ
1
2

1 x 2 u�x�
∂

1 O�jrj�2. (12)

Here c1 � 1.8, and we have used Eq. (3) for the gate volt-
age N ; it follows that g is periodic in N with period 1.
The order jrj2 correction to a is proportional to sin2px,
and diverges only logarithmically at low T .

The first term of Eq. (10) can be interpreted as an inco-
herent contribution to the conductance, while the second
term represents an interference contribution. At jrj � 0
only the former contributes, thus agreeing with what was
found for the noninteracting system, but in stark contrast
to the interacting spinless case; cf. Eq. (8). The complete
incoherence at jrj � 0 corresponds to the vanishing proba-
bility for single-particle scattering at the NFL fixed point
of the 2CK model [21]. Equivalently, one can think of
fluctuations in the dot spin as suppressing a coherent
response in this temperature regime [22]. For nonzero
jrj, the second term in Eq. (10) also contributes. This
term has an interference form, with a well-defined,
x-dependent scattering phase a associated with the
dot. The weight x of this term is zero on resonance
�x � 0�, and grows at low temperatures when off-
resonance �x fi 0�. These features can be understood
within the 2CK analogy. A nonzero x makes the NFL
186801-3
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fixed point unstable, and the resulting renormalization
group flow at low temperatures is towards the FL fixed
point, which has a well-defined phase shift for scattering
from the dot [23]. This flow manifests itself here as a
small coherent term in the conductance which grows at
low temperatures. The flow is parametrized in Eq. (10) by
the function x�x, T�; we expect x ! 1 in the vicinity of
the FL fixed point [16].

Note that the scattering phase a in Eq. (12) is not simply
proportional to ndot. (At jrj � 0, ndot � N [15].) Near
the FL fixed point [i.e., T ø Gc�x�], a can be obtained
within the Kondo analogy using Fermi liquid arguments
[24]. First, note that �ndot 2 1�2 2 N0� is equivalent to
�Sz	, the moment of the Kondo impurity spin. This mo-
ment will be equal to the bare moment of the impurity plus
a quasiparticle contribution, which may be written in terms
of phase shifts: �Sz	 �

1
2 sgn�x� 1 2 3

1
2 �d"�x�

p 2
d#�x�

p �.
The factor of 2 corresponds to the two equivalent channels
of the model. Finally, as the impurity spin has zero charge,
one has d" � 2d#. In the Kondo analogy, " is associated
with electrons in the lead. Equating a with d" then yields

a �
p

2
�ndot 2 N0 2 u�x�� �mod p� , (13)

which agrees with Eq. (12) [25].
A heuristic phase diagram is shown in Fig. 2b for a fixed

temperature D ø T ø EC . For small jrj, Gc�x� , T
for all x, and one is always in region II: the incoherent
term in Eq. (10) dominates, and g�x� exhibits only weak
oscillations. These will grow as jrj is increased or as T
is lowered, following Eq. (10). For sufficiently large jrj
(or low T), tuning x can take one from region II to re-
gion I, with the crossover occurring at Gc�x� � T (dashed
line in Fig. 2b). Near resonance (in II), g is still given by
Eq. (10), but away from resonance (in I), it is given by
the coherent expression g � gmax sin2�d 1 a�, where a

is given by Eq. (13). We expect large oscillations in g�N �
in this regime, with a sharp feature emerging around x � 0
as T is lowered due to the rapid jump by p�2 in a.

The coherence effects discussed here are expected to be
largely insensitive to additional sources of dephasing in
the quantum dot (e.g., from external sources or from elec-
tron-electron interaction terms we neglect) if jtj (and hence
TK ) is sufficiently large. For strong coupling �jtj ! 1�, the
time an electron effectively spends in the dot before being
reflected is �h̄�EC , which is much shorter than typi-
cal dephasing times [3]. Thus, electrons should still
scatter coherently from the dot in this regime. Note that
the model of Ref. [15] used for the strongly coupled dot al-
ready assumes that electron motion in the dot is completely
incoherent.

Finally, our results may have relevance to the experi-
ments in Ref. [1], as they indicate that the relation be-
tween ndot and the scattering phase from an interacting dot
may be significantly different than that expected for a non-
interacting dot.
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