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Entanglement dynamics in a dispersively coupled qubit-oscillator system

D. Wahyu Utami and A. A. Clerk
Physics Department, McGill University, Montreal, Quebec, Canada H3A 2T8
(Received 12 March 2008; revised manuscript received 15 August 2008; published 23 October 2008)

We study entanglement dynamics in a system consisting of a qubit dispersively coupled to a finite-
temperature, dissipative, driven oscillator. The robustness against dissipation of two generic kinds of entangle-
ment is studied: the qubit can be entangled with either the phase or amplitude of the oscillator’s motion. In the
zero-temperature limit, an analytic expression is derived for the logarithmic negativity. We also discuss how
the generated entanglement may be detected via dephasing revivals, being mindful that revivals can occur even

in the absence of any useful entanglement.
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I. INTRODUCTION

There exists a long-standing interest in attempting to pre-
pare and detect quantum states of macroscopic objects or
collective degrees of freedom. Such an experiment would be
more than a mere “proof of principle:” it would provide a
nontrivial test of our understanding of the quantum dissipa-
tive processes which cause such states to degrade with time,
and thus enforce the quantum to classical transition. Recent
advances suggest that submicrometer-scale mechanical reso-
nators could be excellent candidate systems in which to pur-
sue this goal [1]. Such resonators contain a truly macro-
scopic number of atoms; at the same time, they can be
fabricated to have high resonant frequencies and also high
quality factors. This suggests that one has some hope of
cooling these systems to close to their quantum ground state,
and that decoherence due to the dissipative environment of
the resonator should be slow—in standard models, decoher-
ence rates scale with the oscillator damping rate [2]. Nano-
mechanical resonators also have the advantage that they can
be strongly coupled to (possibly coherent) electronic degrees
of freedom; this has recently been demonstrated to allow
sensitive position detection, approaching the fundamental
limits set by quantum back action [3-5].

In this paper, we analyze the entanglement dynamics in an
electromechanical system where a dissipative mechanical
resonator is dispersively coupled to a superconducting qubit:
the state of the qubit simply shifts the frequency of the reso-
nator [6,7]. Such a setup has the key advantage of being able
to work with qubit states which are first-order insensitive to
dephasing due to ever-present charge fluctuations [8,9]. As
such, the system is substantially different from the one ana-
lyzed in the seminal proposal of Armour et al. [10], which
made use of quickly dephasing superpositions of charge
states in the qubit. While the dispersive coupling allows for
longer qubit coherence times, there is a price to pay: unlike
the proposal of Ref. [10], the two energy eigenstates of the
qubit do not yield different average forces on the oscillator.
As such, generating entanglement is a slightly more involved
affair.

We demonstrate that, with a dispersive coupling, there are
two generic ways to generate nonclassical, entangled
oscillator-qubit states: one can entangle the qubit either with
the amplitude of the oscillator’s motion, or with its phase.

1050-2947/2008/78(4)/042323(7)

042323-1

PACS number(s): 03.67.Bg, 85.85.+j, 03.65.Yz

We also study the robustness of these two kinds of entangle-
ment against decoherence due to the dissipative environ-
ment, and discuss their detection using coherence revivals. A
fully analytical expression for the entanglement (as measured
by the logarithmic negativity) is obtained for the zero-
temperature case. In the finite-temperature case, we make use
of an exact solution of the master equation to efficiently
calculate the time-dependent entanglement. We stress that
the system studied here has already been realized in experi-
ment, both with nanomechanical resonators [11], and with
superconducting stripline resonators in circuit QED experi-
ments [9]. Our study also sheds light on general questions of
entanglement dynamics in the presence of dissipation, driv-
ing, and thermal noise, thus complementing other studies of
entanglement in qubit-plus-oscillator models [12,13].

Note that issues of dispersive entanglement, while new in
the context of quantum electromechanics, have been studied
previously in atomic cavity QED systems. In particular, the
groundbreaking experiment of Brune ef al. [14] saw compel-
ling evidence for entanglement between the state of an atom
and the phase of a cavity coherent state. While theoretical
work related to this experiment exists [15-17], our study
differs in several key ways. We consider both phase and
amplitude entanglement (as defined above), and are explic-
itly interested in the effects of finite temperature, something
that is of crucial importance in nanomechanical systems. Un-
like previous work, we also quantify the amount of entangle-
ment using a rigorous entanglement monotone, the logarith-
mic negativity; we may thus rigorously distinguish a generic
loss of qubit coherence from true qubit-oscillator entangle-
ment.

II. SYSTEM

We consider a damped mechanical oscillator (frequency
wy,) which is dispersively coupled to a qubit (splitting fre-
quency wg). Setting =1, the Hamiltonian takes the form
H=Hy+H,, with

. 1 N
Hy=(wy + wg(a‘a + 5) + %‘@&z+f(t)(a +ah. (1)

Here, \ is the strength of the dispersive coupling, f(¢) is a
classical external force applied to the resonator, and H, de-
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scribes the damping of the oscillator (damping rate ) by an
equilibrium Ohmic bath at temperature 7. We stress that such
a dispersive coupling can be easily realized in systems hav-
ing nanomechanical resonators coupled to superconducting
qubits, as it emerges naturally from a Jaynes-Cumming-type
coupling in the relevant limit where wg,> w,, [8]. Dispersive
couplings have also been achieved in the same way in recent
circuit QED experiments coupling superconducting qubits to
stripline resonators [18].

The dispersive coupling implies that the two qubit energy
eigenstates |1),|]) each lead to different oscillator frequen-
cies; equivalently, the effective frequency of the qubit de-
pends on the energy of the oscillator. Unlike previous pro-
posals [10], the two qubit states do not yield different
oscillator forces, making entanglement generation somewhat
more subtle. One can easily show that if the oscillator starts
in a thermal state and is not driven, then there is never any
qubit-oscillator entanglement: the oscillator simply leads to a
statistical uncertainty in the qubit’s frequency. Entanglement
generation thus necessarily requires that the oscillator start in
a superposition of Fock states. The easiest experimental way
to achieve this is by driving the resonator, resulting in a
nonzero value of {a(r)). We are thus led to consider entangle-
ment in such (possibly) nonequilibrium states.

In what follows, we will focus on the experimentally rel-
evant regime of a high Q factor resonator, and where \
< wy,. We may thus make use of the high-Q form of the
Brownian-motion master equation for our system [7]:

p=—i[Ho.p]+ (T /2)D[6 ]p + ¥(ne, + 1)D[alp
+yne Dlad'lp, (2)

where for any operator A we define
D[Alp=ApAT— (ATAp+ pATA)2. (3)

Here, y<w,, is the damping rate of the resonator due the
bath, and Neg is a Bose-Einstein factor evaluated at the bath
temperature 7 and energy wy. I'y is the intrinsic dephasing
rate of the qubit (i.e., dephasing due to sources other than the
oscillator). We consider the usual situation where the qubit
energy relaxation time is much longer than the dephasing
time, and ignore 7' processes.

We will further specialize to a class of experimentally
relevant initial conditions where at =0 there are no qubit-
oscillator correlations. The qubit will be taken to be initially
in the superposition state |#)=(|T)+| | )/ V2, while the oscil-
lator state will correspond to a thermal equilibrium state that
has been displaced by the action of the classical driving force
f(2) (as yet unspecified). Such an uncorrelated state can be
realized either by keeping the qubit-oscillator coupling off
until 7=0 (note that the coupling is tunable in electrome-
chanical systems, e.g., Ref. [4]), or by quickly taking the
qubit from its ground state ||) to |#) via a 7/2 pulse. Note
that each member in this class of initial states has a Gaussian
form. As is discussed extensively in Ref. [7], Eq. (2) implies
that such states remain Gaussian for all times, allowing an
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exact solution of their time evolution for arbitrary tempera-
ture and driving force. Full details of this calculation are
provided in Ref. [7].

One can write the resulting solution for the qubit-
oscillator density matrix in a physically transparent manner
that is especially convenient for entanglement calculations.
We first let D[] denote the displacement operator exp(ad’
—a*d), o=1,| the two qubit states, and define

), (4)

The solution for the qubit-diagonal parts of the density ma-
trix may then be written as simple displaced thermal states:

p11(0) = 3D[ (1) e[ TID e, (1], (5a)

ﬁo'(r’ = Trqb(ﬁ| OJ><O-

p,1(0) = 5D[a|(0]pe[ TID [, (1)]. (5b)

Here, p.q(T) is the thermal equilibrium oscillator density ma-
trix at temperature 7:

Pe T1= (1= VO S ¥ EDln)inl. (6)

n=0
Further, the displacement a,(7) is simply the mean value of d
if the qubit state is frozen to be o. a(¢) and «/(7) obey the

expected classical equations of motion corresponding to a
damped harmonic oscillator with frequency wy, = \:

a,(t) = Tr(alo)olp(1)), )

() = = i(wy = N =iy/2)ay(1) - if(1). (8)

In contrast to the above, the solutions to the qubit-off-
diagonal parts of the density matrix are more complex, and
do not follow from some simple intuitive argument. We find

P10 =[p1(0]" = 3ei= 'y (1) D[ @ (1)]

X {pe [ TH(D]e PO HDDIE (0], (9)

We see that p; also resembles a displaced thermal state.
However, neither the temperature 7 nor the displacements
a, are as expected: in fact, 7* is time dependent. In addition,
there is an additional phase factor ¢(¢) resulting from the
dependence of the qubit frequency on the resonator energy.
Defining o(t) =coth[(wy,/2T*)+i¢/2], one finds

0==Ao—-Q2ne+1D]-iNo> - 1) (10)
with the initial condition T7%(0)=T, ¢(0)=0. In addition,
@y =(a+x) * (1-Reo * ilmo)(a, —a_)/(2Re 0),
(11)
where we have defined
do=[-i(0y = \Re o) = 2las —if))  (12)

and y=vy+Awy Im o. Note that the coherent state displace-
ments &, coincide with the simple classical displacements
a, only in the limit of zero temperature.

Finally, the prefactor Y(¢) in the expression for g, (¢) in
Eq. (9) describes the lack of purity of the qubit-oscillator
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state: the qubit-oscillator system will in general not be in a
pure state. This can result either from unwanted entangle-
ment with the oscillator’s dissipative bath, or from the intrin-
sic qubit dephasing described by I', in Eq. (2). Defining
pn(T)=<n|ﬁeq(T)|n> we find

el exp(— i)\f dr' (o + 2a+a>_k)>
Y(1)= - (13)

S pu(TH)e 2| D& 1D & n)

III. ENTANGLEMENT

Having solved for the evolution of the density matrix in
the previous section, we now turn to characterizing the
amount of qubit-oscillator entanglement it possesses. This is
somewhat involved, as in general our system will be in a
mixed state. Similar to many recent works, we will use the
logarithmic negativity Ey to quantify the amount of qubit-
oscillator entanglement [19,20]. Ey is a rigorous entangle-
ment monotone applicable to mixed state systems, and is
strictly zero for unentangled systems. One has Ey
=log,(2N+1), where the negativity N is the absolute value
of the sum of the negative eigenvalues of the partially trans-
posed density matrix p*7. It is worth emphasizing that the
logarithmic negativity is a complex function of the entire
density matrix, not just, e.g., the qubit coherence Trp;|. As
such, even in the case of zero intrinsic qubit dephasing (i.e.,
I',=0), a loss of qubit coherence does not in itself imply the
existence of any qubit-oscillator entanglement; such loss of
coherence could instead be due to the effects of the oscilla-
tor’s dissipative bath.

As discussed in the previous section, we always start from
a state at =0 where the qubit is uncorrelated with the oscil-
lator, and is in an equal superposition of its two energy
eigenstates. The two qubit states in this superposition each
lead (via the dispersive coupling) to different oscillator fre-
quencies; this difference will be exploited to yield entangled
states which, in the absence of dissipation or thermal noise,
would have the simple form

There are thus two generic ways to generate entanglement
(see diagram in Fig. 1). The first is to entangle the qubit with
the phase of the resonator, i.e., arg{d). The second generic
approach is to entangle the qubit with the amplitude of the
oscillator’s motion, i.e., [(d@)|. Note that entanglement with
phase was studied in the seminal experiments of Brune et al.
[14], and in related works of theory [15-17]. However, the
logarithmic negativity associated with this kind of entangle-
ment has not been studied before, nor its robustness against
finite temperatures.

In what follows, we will discuss phase and amplitude en-
tanglement at both zero and nonzero bath temperature 7. In
the zero-temperature case, the solution of the master equa-
tion in Egs. (5) and (9) yields an exact expression for Ey(z).
Letting cos[ 6(t)]=|(a;(t)|a(2))|, one finds
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FIG. 1. (Color online) Illustration of amplitude entanglement
(left) and phase entanglement (right). The two displaced states cor-
responding to the qubit up and down are drawn. In the case of
amplitude entanglement, a; gets driven to a higher oscillation am-
plitude compared to «|, as only «; is on resonance. In the case of
phase entanglement, there is no driving force; however, we start at
a large coherent state amplitude. Both of the states gradually decay,
but while this occurs, a; oscillates faster than «.

M) = }1[‘/“ —|YD?*+4]y[sin®* - (1-|YD],  (15)

where for T=0 Eq. (13) for Y yields

e¢ exp(— 2\ [{dt' (|a; o [sin ;)
cos 6(1)

[Y(1)| = (16)

with ¢, l(t):—arg[aT(t)aT(t)]. As expected, A (and hence
the entanglement) is an increasing function of the distin-
guishability sin? # of the two oscillator states. It is also a
monotonically decreasing function of the purity Y(r): as time
progresses, the bath can distinguish the two oscillator states
|a,), thus reducing both Y(#) and the amount of oscillator-
qubit entanglement. One might expect that |Y(#)| should de-
pend only on the history of the overlap cos 6(¢'); this is not
the case. Instead, the decay of | Y(7)| is sensitive to the history
of sin d)T l(t)’ i.e., the sine of the relative phase between the
two oscillator coherent state amplitudes. Somewhat surpris-
ingly, times when ¢; = do not contribute to the decay of
|Y(z)|, even though the overlap between the two oscillator
coherent states is maximally small at such times.

Turning to the more general case where the bath tempera-
ture 7> 0, we again use our exact Egs. (5)—(12) to solve for
the system dynamics. Unfortunately, the resulting solution
for the density matrix [as given in Egs. (5)] does not allow
for an exact evaluation of the logarithmic negativity. It does,
however, allow for a simple numerical evaluation of A: one
simply converts p into a matrix in a basis of displaced Fock
states, and then numerically finds the partial transpose and
the corresponding negative eigenvalues. For T>0, Ey(r) is
not simply a function of the overlap (a; |a () and the purity
Y(¢) [as given by the full expression Eq. (13)]—the entire
matrix structure of p; is relevant.

Finally, in what follows we will be especially interested in
how the oscillator dissipation affects the dynamics of en-
tanglement. We will thus focus on the case of small intrinsic
qubit dephasing, I',— 0; we will comment on the effects of a
nonzero I';, in Sec. IV.
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FIG. 2. (Color online) Logarithmic negativity Ey versus time.
Ey is a non-monotonic function of time in the amplitude-
entanglement setup, while it decays monotonically in the phase-
entanglement setup. Blue lines correspond to the amplitude-
entanglement setup; red lines correspond to the envelope of the
oscillating Ey in the phase-entanglement setup. Solid lines are for
neq=0, dot-dashed for n.,=0.5, and dashed for n.,=1.0. For the
phase-entanglement curves, we took ay=0.76 to maximize the total
integral of Ep(f) at ne=0. We also chose a;=3.74 so that the inte-
gral of Ey(t) for amplitude entanglement at 71,,=0 is the same as the
phase case. The inset shows the total time integral of Ey for both
phase and amplitude entanglement as a function of ng,. In the
phase-entanglement case, the integrated entanglement tends to zero
near neq=1. In all cases, N\=0.01wy, y=10"wy,, I',=0.

A. Amplitude entanglement

To entangle the qubit with the amplitude of the oscilla-
tor’s motion, we start at =0 with the qubit in a superposition
of its eigenstates, and the oscillator in a thermal state with
(a4)=0. The oscillator is then driven with a force f(z)
=yaycos[(wy+N)t] (a;>0). In the relevant limit of a
high-Q oscillator where y<<\, f(1) will cause |a(#)| to grow
to a large value a;, while |o|| will be smaller by a large
factor wy,/y: hence, the amplitude of the oscillator’s motion
will become entangled with state of the qubit, and we would
expect the qubit-oscillator entanglement to grow with time.
However, at long enough times, the dissipative bath coupled
to the oscillator will destroy this entanglement: the bath can
distinguish the two states |a,,), as described by Y(#). These
two competing tendencies lead to Ey being a nonmonotonic
function of time; this is shown in Fig. 2.

At T=0, one can use Egs. (5) and (15) to derive simple,
exact expressions for Ey(f) for the amplitude entanglement
setup. Focusing on the relevant limit y<<\ < w,,, and taking
I',=0, one finds that the negativity A(#) (and hence the en-
tanglement) is independent of \, and determined by

2
Y= exp((—az&[(Z —e2 1 - yt]), (17a)
cos’ 6= exp[— (af)z(l -2 (17b)

Note that in the long time limit the overlap cos 6 saturates,
while Y(r) decays exponentially to zero. This exponential
decay is easily understood from Eq. (16): at long times, the
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FIG. 3. (Color online) Left: Distance between effective oscilla-
tor displacements &;(t), @ (t) entering the expression for p; . The
apparent width of some curves is due to rapid oscillations with
frequency A/ . Right: Bose-Einstein factor associated with the ef-
fective temperature 7*(t) appearing in the expression for p; . Both
cases are for the amplitude entanglement setup with a;=3.74. On
the left, the highest curves correspond to the lowest n,,=0; on the
right, the value of the curve at 1=0 gives n,. Temperatures are
(black), 0.1 (blue), 0.5 (green), and 0.1 (red). N, ¥, and I, as in Fig.
1. For T>0, one finds a,# «,; temperature reduces the distin-
guishability of the &,.

phase difference ¢ is nonzero and independent of time.

Nonzero temperatures dramatically suppress amplitude
entanglement, as is shown in Fig. 2. Even though the two
“classical” amplitudes a;,a, continue to have very different
magnitudes at 7>0 (they are of course independent of T),
the displacements @;,&; which determine p;| [cf. Eq. (9)]
become less distinguishable as T is increased. This behavior
is shown in Fig. 3, along with the time dependence of the
effective temperature T*(¢) appearing in the expression for
Pri-

B. Phase entanglement

To entangle the qubit with the resonator phase, we prepare
the system at =0 so that the qubit is again in a superposition
of its two eigenstates, and the oscillator is in a state of mo-
tion characterized by the coherent state amplitude « (e.g.,
one could drive the oscillator at w,,, keeping the coupling to
the qubit off until r/=0). All driving forces on the oscillator
are turned off at =0, and the coupled system is allowed to
evolve. The magnitudes of both coherent states ap,a will be
identical, and will decay at a rate 7. In contrast, the phase of
the oscillator coherent state will wind at a frequency deter-
mined by the qubit. We have thus prepared a state where the
phase, not the amplitude, of the oscillator’s motion is en-
tangled with the qubit.

Shown in the top panel of Fig. 4 is E\(¢) for the phase
entanglement setup, again in the case of zero intrinsic qubit
dephasing. The entanglement drops to zero periodically at a
frequency N/ at these times, the phases of the two oscilla-
tor states a;,«| are aligned, implying cos #=1. This align-
ment also implies that the coherence of the qubit is partially
restored, as is shown in the bottom panel of Fig. 4, where we
plot 2|Trﬁ¢ i|' These revivals of coherence are not perfect, as
the dissipative bath leads the qubit-oscillator system to lose
purity: one finds that the factor Y(¢) decays in a steplike
fashion. This loss of purity also causes a gradually decaying
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FIG. 4. (Color online) Phase entanglement. (a) Time-dependent
logarithmic negativity Ey, ap=0.76. Solid line is for n.4=0, dashed
for neq=1.0, and dash-dotted for n.,=5.0. (b) Qubit recoherences
associated with phase entanglement; same parameters. (c) Purity |Y|
of qubit-resonator system; same parameters. All with \,y,I"; as in
Fig. 1.

envelope for the entanglement oscillations, as can be seen in
Fig. 4. At zero temperature, and for y<<\ < wy,, the decay of
Y(¢) is given by

2
Q)
Y(t) = exp(_ y2+—‘;)\2{4>\2 — e Y[4\% + 2\ sin(2\1)

+29 sin2(m)]}> . (18)

Note that Y(z) does not tend to zero in the long time limit.

It is interesting to note that for a fixed bath temperature
the total amount of phase entanglement [as measured by the
time integral of Ey(r)] has a maximum as a function of the
initial coherent state amplitude «; this is shown in Fig. 5.
For «a too small, the two oscillator states are not sufficiently
distinguishable, and Ey(f)=0 remains small for all times,
while for too large an «, the bath very rapidly distinguishes
the two oscillator states in the superposition, and Ex(f) de-
cays rapidly to zero.

Finally, it is interesting to compare the phase and ampli-
tude entanglement setups at finite temperature; this is done in
Fig. 2, where we plot only the envelope of the oscillating
entanglement in the phase case. As can be seen from the
inset, phase entanglement is more robust against nonzero T
than amplitude entanglement; the total time integral of Ey(r)
decays far more slowly as a function of n in the phase case,
for parameters that yield the same entanglement at n.,=0.
Further, while both kinds of entanglement are suppressed by
nonzero T, entanglement in the phase case can remain large
for short times (i.e., for times ¢ such that 1/A<<r<<1/7y).
Thus, phase entanglement shows a certain increased resil-
ience against thermal dissipation compared to amplitude en-
tanglement.
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FIG. 5. (Color online) Total entanglement (as measured by the
time integral of Ey) for the phase-entanglement setup, as a function
of the initial coherent state amplitude & and nq. For a finite neq,
there is an optimal value of a, which maximizes the total entangle-
ment. In all cases, A=0.01wy, y=107w,, T',=0.

C. Detecting entanglement

We now discuss how entanglement may be detected using
revivals in the coherence of the qubit. Consider the case of
phase entanglement: as shown in Fig. 4, such entanglement
leads to qubit recoherences [i.e., the magnitude of the qubit’s
off-diagonal density matrix element |Trf)T l(t)| iS nonmono-
tonic in time]. This quantity represents the time-dependent
dephasing of the qubit, and is measurable via either a stan-
dard Ramsey interference experiment [21], or via state to-
mography. While such revivals of coherence have been used
to detect nonclassical states in other situations [22], and have
been proposed as a way to detect entanglement in nano-
electromechanical system (NEMS) [10], one must be careful:
it is possible to have coherence revivals without any qubit-
oscillator entanglement. In our system, a purely thermal state
oscillator state with {a(7))=0 yields dephasing revivals, but
zero qubit-oscillator entanglement.

Despite this caveat, one can still use dephasing revivals as
a proxy for detecting entanglement. We focus on phase en-
tanglement, as the amplitude-entanglement setup does not
lead to any dephasing revivals, but rather a monotonic (but
nonexponential) decay of |Trp; (r)|. The basic idea in using
coherence revivals to detect phase entanglement is that the
Fourier spectrum of the time-dependent dephasing lets one
unambiguously distinguish an initial thermal state with «
=0 and Ey(7)=0, from a phase-entangled state where a# 0.
This difference is essentially the number splitting effect dis-
cussed in Refs. [7,23,24], and measured in Ref. [18]: the
peaks in the Fourier spectra are directly related to the number
distribution in the oscillator. Thus, in a thermal state, one
expects the peaks to follow a simple geometric series. In
contrast, when «; is nonzero, the distribution begins to re-
semble more the Poisson distribution associated with a num-
ber state. Observing this difference, and comparing it to
theory, would be a convincing way to detect the phase en-
tanglement we have described. The difference between the
two spectra is shown in Fig. 6.
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FIG. 6. (Color online) Phase-entanglement spectrum. S(w), the
real part of the Fourier transform of the qubit’s time-dependent
coherence 2|Trp; (#)|. The red dashed curve is for ne,=0.5, a=0.
There are revivals of coherence, but strictly zero qubit-oscillator
entanglement; S(w) shows peaks whose area follows a geometric
series. In contrast, the solid blue curve corresponds to «y=1.23,
neq=0.5. Here, one gets both coherence revivals and entanglement.
The dephasing spectrum is markedly different: the peak areas do
not form a geometric series. The inset shows the integrated area for
each spectrum in the two cases. All with N, y,T"; as in Fig. 1.

IV. EXPERIMENTAL CONSIDERATIONS AND
CONCLUSIONS

To realize these ideas in a quantum electromechanical
system, there are many challenges to be addressed. One must
have a sufficiently strong qubit-resonator coupling. The re-
sulting dispersive coupling N must be much larger than both
the resonator damping v, as well as the intrinsic qubit
dephasing rate I',. As indicated by Eq. (13), the qubit
dephasing rate causes the purity Y(z) of the qubit-oscillator
state to decay over and above the decay causes by the oscil-
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lator’s dissipative bath; this decay quickly causes a suppres-
sion of qubit-oscillator entanglement. In the case of phase
entanglement, one would like to see several coherence reviv-
als before this purity is lost: this requires N larger than I'g.
While there are no published works on qubit-
nanomechanical oscillators to date, work is actively under
way [11]. In a related system, Naik et al. [4] were able to
achieve a very strong coupling between a nanomechanical
resonator and the central island of a superconducting single
electron transistor. If this island had been used as a qubit, the
corresponding dispersive coupling would have been A
~ 1 MHz, much larger than the oscillator damping rate in the
experiment, y~ 200 Hz. Further, state of the art experiments
on superconducting qubits are able to achieve dephasing
rates of I'y~1 MHz [25]. Thus, by combining these ap-
proaches, one is at least in striking distance of the parameters
needed to realize the ideas discussed here.

A second key challenge for experiments is to achieve a
low enough temperature that the effects of the dissipative
bath are not too pronounced. The experiment of Ref. [4] was
able to achieve n.,~25; more recent experiments involving
back-action cooling in NEMS are expected to achieve even
lower oscillator temperatures. Our results are promising, as
they show that even if the oscillator is not in its quantum
ground state, one can still obtain appreciable entanglement.

In conclusion, we have studied entanglement in a disper-
sive qubit-oscillator system. We have identified two generic
kinds of entanglement (phase and amplitude entanglement),
and have shown that in general, phase entanglement is more
robust against the effects of dissipation. We have also dis-
cussed how one can detect phase entanglement by using re-
vivals in the qubit’s coherence, and how one can distinguish
this from revivals occurring without any qubit-oscillator en-
tanglement.
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